

Book Recommender System for Readers in a

University Library.

(Major Project)

M.Ruthvik Mohan

mruthvikmohan @ protonmail.com

Swami Vivekananda Institute Of Technology,Hyderabad,India.

mailto:mruthvikmohan@protonmail.com

ii

CONTENTS

S.NO TITLE PG.NO

1 Contents ii

2 List of Figures iii

 3 List of Tables iv

4 Synonyms and Abbrevations v

5 Abstract 1

6 Chapter 1 Introduction 2

7 Chapter 2 Literature Survey 3

8 2.1 Introduction 3

9 2.2 Existing System 4

10 2.3 Disadvantage of Existing System 5

11 2.4 Proposed system 5

12 2.5 Advantages of Proposed System 5

13 Chapter 3 Analysis 6

14 3.1 Software Design Method 6

15 3.2 Architecture Design 10

16 Chapter 4 Algorithms used in work 14

17 4.1 K Nearest Neighbor 14

18 4.2 Euclidean distance 15

19 Chapter 5 Tools used for implementation 17

20 5.1 Python 17

21 5.2 Pandas 29

22 5.3 Data Structures 31

23 5.4 Matplot - LIB 60

24 5.5 Seaborn 67

25 5.6 Scikit -Learn 82

26 Chapter 6 Implementation And Results 88

27 Chapter 7 Conclusion 89

28 Chapter 8 References 90

iii

LIST OF FIGURES

Fig no Title Pgno

1 Architecture Diagram 10

2 GUI Phase 12

3 DFD Flowchart 13

4 KNN Classification 14

5 Euclidean Distance 15

6 Matplot Axes 58

7 Anatomy of Matplot LIB 67

8 Seaborn Plot 69

9 Seaborn Scatter Plot 71

10 Implot 72

11 Specialized Categorical Plots 72

12 Kernal Density Plot 73

13 Mean Value Plot 74

14 Bar plot 74

15 Visualizing Dataset Structure 76

16 Pairplot 77

17 Smoker plot 78

18 Scatter plot 79

19 Training Set 85

20 Flask logo 86

iv

LIST OF TABLES

Table no Title Pgno

1 Tips Dataset 81

2 FRMI Dataset 82

v

SYMBOLS AND ABBREVIATIONS

Abbreviation Full Form

CF Collaborative Filtering

KNN K Nearest Neighbor

RS Recommendation System

JS Jaccard Similarity

1

ABSTRACT

 Presently a-days, many significant internet business and websites are

utilizing suggestion frameworks to give important proposals to their clients and

customers. The suggestions could be founded on different parameters, for

example, things mainstream on the company‟s Website; client/ customer

qualities, for example, land area or other statistic data; or past purchasing

conduct of top clients/ customers. In this project, a book suggestion motor is

proposed which utilizes content-based filtering technique for recommending the

books to the customer. The content based filtering technique doesn‟t requires a

big amount of data to get trained and can work on significantly less amount of

data even from a single customer. The Algorithm used here is KNN with Cosine

similarity.

2

CHAPTER 1

INTRODUCTION

 A Recommendation System, in genuine definition can be described to as

a framework that can run on grouped/non grouped environment by taking

client/customer‟s online impression as one of its input and producing a likely

result for the client along these lines giving its clients an expectation closer to

the real world. Recommender system generally require a huge dataset and a

quick registering framework that can perform examination on the equivalent

within seconds.

Recommendation Systems, in easier terms are programs that are information

escalated and include complex example coordinating on a lot of predefined

parameters and they become proficient with the expansion in the size of the

substance being sustained to them. Recommender frameworks represents client

inclinations with the end goal of proposing things to buy or look at. They have

become basic applications in electronic business also, giving proposals that

viably prune huge data spaces with the goal that clients are coordinated toward

those things that best address their issues and interests. An assortment of

systems have been proposed till today for performing proposals. The systems

for example, content-based, communitarian, information based and statistic are

utilized for proposals.

In the proposed book Recommendation System, books will be shown by using

content based filtering technique, which can work even in a smaller amount of

data.

3

CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Online Book Recommendation System using Collaborative Filtering

https://iopscience.iop.org/article/10.1088/1742-6596/1362/1/012130/pdf

Recommendation System (RS) is software that suggests similar items to a

purchaser based on his/her earlier purchases or preferences. RS examines huge

data of objects and compiles a list of those objects which would fulfil the

requirements of the buyer. Nowadays most ecommerce companies are using

Recommendation systems to lure buyers to purchase more by offering items

that the buyer is likely to prefer. Book Recommendation System is being used

by Amazon, Barnes and Noble, Flipkart, Goodreads, etc. to recommend books

the customer would be tempted to buy as they are matched with his/her choices.

The challenges they face are to filter, set a priority and give recommendations

which are accurate. RS systems use Collaborative Filtering (CF) to generate

lists of items similar to the buyer‟s preferences. Collaborative filtering is based

on the assumption that if a user has rated two books then to a user who has read

one of these books, the other book can be recommended (Collaboration). CF

has difficulties in giving accurate recommendations due to problems of

scalability, sparsity and cold start. Therefore this paper proposes a

recommendation that uses Collaborative filtering with Jaccard Similarity (JS) to

give more accurate recommendations. JS is based on an index calculated for a

pair of books. It is a ratio of common users (users who have rated both books)

divided by the sum of users who have rated the two books individually. Larger

the number of common users higher will be the JS Index and hence better

recommendations. Books with high JS index (more recommended) will appear

on top of the recommended books list.

Book Recommender System

https://webpages.charlotte.edu/nmatta1/cloudproject/Project_Report.pdf

Both the online entertainment and e-commerce companies are trying to retain

their customers by taking their access to the website to more personalized

manner. So, provide additional recommendations based on users past activity.

Our project would be one of such system that recommends additional books that

belongs to similar genre, author or publisher. Such systems result in increase in

4

rate of purchase, these may also include unplanned purchases driven by surprise

factor from the recommendations made.

Personalized Book Recommendation System using Machine Learning

Algorithm

https://thesai.org/Downloads/Volume12No1/Paper_26-

Personalized_Book_Recommendation_System.pdf

As the amounts of online books are exponentially increasing due to COVID-19

pandemic, finding relevant books from a vast e-book space becomes a

tremendous challenge for online users. Personal recommendation systems have

been emerged to conduct effective search which mine related books based on

user rating and interest. Most of these existing systems are user-based ratings

where content-based and collaborativebased learning methods are used. These

systems' irrationality is their rating technique, which counts the users who have

already been unsubscribed from the services and no longer rate books. This

paper proposed an effective system for recommending books for online users

that rated a book using the clustering method and then found a similarity of that

book to suggest a new book. The proposed system used the K-means Cosine

Distance function to measure distance and Cosine Similarity function to find

Similarity between the book clusters. Sensitivity, Specificity, and F Score were

calculated for ten different datasets. The average Specificity was higher than

sensitivity, which means that the classifier could re-move boring books from the

reader's list. Besides, a receiver operating characteristic curve was plotted to

find a graphical view of the classifiers' accuracy. Most of the datasets were

close to the ideal diagonal classifier line and far from the worst classifier line.

The result concludes that recommendations, based on a particular book, are

more accurately effective than a user-based recommendation system.

2.2 EXISTING SYSTEM

Following are some of the existing book recommendation engines used by the

top rated book purchasing websites.

The existing engines make use of conventional algorithms for

recommendations. In Content based Recommendation Engine, system generates

recommendations from source based on the features associated with products

and the user‟s information.

Content-based recommenders treat recommendation as a user-specific

classification problem and learn a classifier for the user's likes and dislikes

5

based on product features. In Collaborative recommendation engines,

suggestions are generated on the basis of ratings given by group of people. It

locates peer users with a rating history similar to the current user and generates

recommendations for the user.

In Context based Recommendation Engine, system requires the additional data

about the context of item consumption like time, mood and behavioural

aspects. These data may be used to improve the recommendation compared to

what could be performed without this additional source of information.

2.3 DISADVANTAGES OF EXISTING SYSTEM

The major problem with existing system is it needs a good amount of data to

even work considerably good which can be a challenge for small businesses and

startups.

The data which is to be used for training should be precise and filtered. Any

mistake in the data can lead to inaccuracy of the whole system.

2.4 PROPOSED SYSTEM

The Proposed Book Recommender System will use Content based filtering

technique using cosine similarity algorithm. This methodology depends on

making a plenty of parameters to describe a particular product.. Thinking about

an Book as an model the potential parameters could be Author, Publisher, Year

Published etc.. The bigger the parameter set the better and simpler it is to

coordinate examples with customer‟s profile and his online impression. The

parameters would then be able to be assigned weight and consequently a

relative need is set for every one of the parameter. All these parameters are then

used to make a customer‟s profile. Henceforth we see that the system finds out

about the client inclinations and choice patters by his online impression.

A website System can be made where the user can select the books which

he/she likes or the book which user is currently reading. In real-time, the system

will be recommending them other books. Such system in future scope can also

be integrated with ecommerce website to increase sales.

2.5 ADVANTAGES OF PROPOSED SYSTEM

6

The major advantage of using Content based filtering algorithm is no

requirement of huge dataset.The Content Based filtering algorithm is flexible in

nature.

CHAPTER 3

ANALYSIS
3.1 Software Design Method

Software design is the process of conceptualizing the software requirements of a

software implementation. Software design takes user requirements as an issue

and seeks to find the best solution. Once the software is conceptualized, a plan

is created to find the best design to implement the desired solution.

 There are several variations in software design. Let's take a quick look at them:

3.1.1 Structured Design

Structured design conceptualizes the problem into several well-organized

solution elements. It is something about the essentially solutions of design. The

advantage of structured design is that you can better understand what is

resolved how the problem. The structured design, the designer makes it easy to

further concentrate on the problem.

Structured design is based mainly on the "divide and conquer" strategy. In this

strategy, is divided into a plurality of small problem is a problem, until the

whole issue is resolved, small problems will be resolved one by one.

Small problems are resolved by the components of the solution. The structured

design emphasizes that these modules are properly organized to achieve an

accurate solution.

These modules are arranged hierarchically. They communicate with each other.

A well-structured design always adheres to some rules for communication

between multiple modules:

Cohesion - grouping of all functionally related elements.

Coupling communications between different modules.

 A well-structured design with high cohesion and low coupling.

7

3.1.2 Function-oriented design

In a function-oriented design, a system consists of many small subsystems

called functions. These features allow you to perform important tasks on your

system. The system is displayed as a top view of all features.

Function-oriented design inherits some characteristics of structured design

using divide-and-conquer method.

This design mechanism provides a means of abstraction by dividing the entire

system into smaller functions and hiding information and its operations. These

functional modules can exchange information with each other by passing

information or using globally available information.

Another characteristic of a function is that when a program calls a function, that

function changes the state of the program. This may not be acceptable in other

modules. Function-oriented design works well when the state of the system is

not important and the program / function works on the input rather than the

state.

Design process

 The entire system is displayed as a data flow in the system using a data

flow diagram.

 DFD shows how a function changes the data and state of the entire

system.

 The entire system is logically divided into smaller units called functions

based on how it behaves within the system.

 The functions are then implemented.

3.1.3 Object-oriented design

Object-oriented design avoids entities and their properties rather than the

features contained in the software system. This design strategy focuses on the

entity and its properties. The overall concept of a software solution revolves

around the units involved.

Let's review the important concepts of object-oriented design.

8

 Objects - All entities involved in solution design are called objects. For

example, people, banks, businesses, and customers are treated as objects.

Each entity has several attributes associated with it, and there are several

methods to execute on those attributes.

 Class - A class is a generalized description of an object. The object is an

instance of the class. The class defines all the attributes that an object can

have and the methods that define the functionality of the object.

 In solution design, attributes are stored as variables and functions are

defined by methods or procedures.

 Encapsulation - OOD bundles attributes (data variables) and methods

(operations on data), which is called encapsulation. Encapsulation not

only bundles important information about an object, but also limits access

to data and methods from the outside. This is known as hiding

information.

 Inheritance - OOD allows you to stack similar classes hierarchically.

Subclasses or subclasses can import, implement, and reuse valid variables

and methods from direct superclasses. This property of OOD is called

inheritance. This makes it easy to define a particular class and create a

generalized class from a particular class.

 Polymorphism - The polymorphism OOD language provides a

mechanism that allows methods that perform similar tasks but have

different arguments to have the same name. This is called polymorphism

and allows you to perform different types of tasks with a single interface.

The appropriate part of the code is executed, depending on how the

function is called.

Design process

The software design process can be recognized as a series of well-defined steps.

Depending on your design approach (functional or object-oriented), it may

include the following steps:

 Solution designs are created from requirements or previously used

systems and / or system flow charts.

 Objects are identified and grouped into classes by the name of attribute

characteristic similarity.

 The class hierarchy and the relationships between them are defined.

9

 The application framework is defined.

3.1.4 Software design approach

Two common approaches to software design are:

 Top-down design

It is known that the system consists of multiple subsystems and contains many

components. In addition, these subsystems and components have their own set

of subsystems and components, allowing you to create a hierarchical structure

in your system.

The top-down design takes the entire software system as a unit and

disassembles it to get multiple subsystems or components based on some

characteristics. Each subsystem or component is then treated as a system and

further subdivided. This process continues until you reach the lowest system

level in the top-down hierarchy.

The top-down design starts with a generalized system model and defines its

more specific parts. Putting all the components together creates the entire

system.

The top-down design is suitable when you need to design a software solution

from scratch and you do not know the specific details.

 Bottom-up Design

The bottom-up design model starts with the most specific and basic

components. Continue assembling high-level components with basic or low-

level components. Continue to create higher level components until the desired

system is developed as a single component. The higher the level, the greater the

set of abstractions.

The bottom-up strategy is suitable when you need to build a system from an

existing system that can use basic primitives.

10

Both top-down and bottom-up approaches are not individually practical.

Instead, the appropriate combination of both is used.

3.2 ARCHITECTURE DIAGRAM:
 Research Phase Explanation

11

Fig1 Architecture diagram

Data Acquisition:

12

Data Acquisition means loading/importing the necessary Data into

python workspace. Converting the normal tabular data like csv files etc. into

python understandable data such as “nd-array” object of “numpy” object.

Data Analysis:

Data Analysis means understanding the basics of the data being loaded.

To have knowledge of number of row and columns, type of data each column

has, their statistics and Graphical Structures. So that we can perform Data pre-

processing step easily.

Data pre-processing

Data pre-processing means cleaning and preparing the data for giving it as

input to the algorithm etc.

1. Cleaning: removing or handling the empty values in the dataset.

2. Data Manipulation: working with encoders transposing the row into

columns vice versa and other pre-processing steps.

Creating: instantiating the multiple algorithms which can accept input and

produce output and supplying them with the train data to start the training.

Inference: providing the input to Algorithm to process the output

recommendation as it is a un-supervised algorithm.

 GUI PHASE

13

Fig 2 GUI Phase

 DFD

14

Fig 3 DFD Flowchart

CHAPTER 4

15

ALGORITHM(S) USED IN THE WORK

4.1 K Nearest Neigbhors

K-NN is a non-parametric and lazy learning algorithm. Non-

parametric means there is no assumption for underlying data distribution i.e. the

model structure determined from the dataset.

It is called Lazy algorithm because it does not need any training data

points for model generation. All training data is used in the testing phase which

makes training faster and testing phase slower and costlier.

K-Nearest Neighbor (K-NN) is a simple algorithm that stores all the

available cases and classifies the new data or case based on a similarity

measure.

K-NN classification

In K-NN classification, the output is a class membership. An object is

classified by a plurality vote of its neighbors, with the object being assigned to

the class most common among its k nearest neighbors (k is a positive integer,

typically small). If k = 1, then the object is simply assigned to the class of that

single nearest neighbor.

To determine which of the K instances in the training dataset are most

similar to a new input, a distance measure is used. For real-valued input

variables, the most popular distance measure is the Euclidean distance.

Fig 4 KNN Classification

Source: Towards Data Science

4.2 The Euclidean distance

16

The Euclidean distance is the most common distance metric used in low

dimensional data sets. It is also known as the L2 norm. The Euclidean

distance is the usual manner in which distance is measured in the real world.

Where p and q are n-dimensional vectors and denoted by p =

(p1, p2,…, pn) and q = (q1, q2,…, qn) represent the n attribute values of two

records.

While Euclidean distance is useful in low dimensions, it doesn’t work

well in high dimensions and for categorical variables. The drawback of

Euclidean distance is that it ignores the similarity between attributes. Each

attribute is treated as totally different from all of the attributes.

Other popular distance measures :

 Hamming Distance: Calculate the distance between binary vectors.

 Manhattan Distance: Calculate the distance between real vectors using

the sum of their absolute difference. Also called City Block Distance.

 Minkowski Distance: Generalization of Euclidean and Manhattan

distance.

Steps to be carried out during the K-NN algorithm are as follows:

1. Divide the data into training and test data.

2. Select a value K.

3. Determine which distance function is to be used.

4. Choose a sample from the test data that needs to be classified and

compute the distance to its n training samples.

5. Sort the distances obtained and take the k-nearest data samples.

6. Assign the test class to the class based on the majority vote of its k

neighbors.

Fig 5 Euclidean Distance

Source: DataCamp

17

Performance of the K-NN algorithm is influenced by three main factors :

1. The distance function or distance metric used to determine the nearest

neighbors.

2. The decision rule used to derive a classification from the K-nearest

neighbors.

3. The number of neighbors used to classify the new example.

Advantages of K-NN:

1. The K-NN algorithm is very easy to implement.

2. Nearly optimal in the large sample limit.

3. Uses local information, which can yield highly adaptive behaviour.

4. Lends itself very easily to parallel implementation.

CHAPTER 5

18

TOOLS USED FOR IMPLEMENTATION

5.1 PYTHON

Python is an interpreted, high-level, general-purpose programming language.

Created by Guido van Rossum and first released in 1991, Python has a design

philosophy that emphasizes code readability, notably using significant

whitespace. It provides constructs that enable clear programming on both small

and large scales. Van Rossum led the language community until stepping down

as leader in July 2018.Python features a dynamic type system and automatic

memory management. It supports multiple programming paradigms, including

object-oriented, imperative, functional and procedural. It also has a

comprehensive standard library. The Python interpreter and the extensive

standard library are freely available in source or binary form for all major

platforms from the Python Web site, https:// www. python .org/, and may be

freely distributed. The same site also contains distributions of and pointers to

many free third party Python modules, programs and tools, and additional

documentation.

Python is simple to use, but it is a real programming language, offering much

more structure and support for large programs than shell scripts or batch files

can offer. On the other hand, Python also offers much more error checking than

C, and, being a very-high-level language, it has high-level data types built in,

such as flexible arrays and dictionaries. Because of its more general data types

Python is applicable to a much larger problem domain than Awk or even Perl,

yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in

other Python programs. It comes with a large collection of standard modules

that you can use as the basis of your programs — or as examples to start

learning to program in Python. Some of these modules provide things like file

I/O, system calls, sockets, and even interfaces to graphical user interface

toolkits like Tk.

19

Python is an interpreted language, which can save you considerable time during

program development because no compilation and linking is necessary. The

interpreter can be used interactively, which makes it easy to experiment with

features of the language, to write throw-away programs, or to test functions

during bottom-up program development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs

written in Python are typically much shorter than equivalent C, C++, or Java

programs, for several reasons:

 the high-level data types allow you to express complex operations in a

single statement;

 statement grouping is done by indentation instead of beginning and

ending brackets;

 no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new

built-in function or module to the interpreter, either to perform critical

operations at maximum speed, or to link Python programs to libraries that may

only be available in binary form (such as a vendor-specific graphics library).

Once you are really hooked, you can link the Python interpreter into an

application written in C and use it as an extension or command language for

that application.

Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.7 on those

machines where it is available; putting /usr/local/bin in your Unix shell‟s search

path makes it possible to start it by typing the command:

python3.7

to the shell. [1] Since the choice of the directory where the interpreter lives is an

installation option, other places are possible; check with your local Python guru

or system administrator. (E.g., /usr/local/python is a popular alternative

location.)

On Windows machines, the Python installation is usually placed

in C:\Python37, though you can change this when you‟re running the installer.

To add this directory to your path, you can type the following command into the

command prompt in a DOS box:

set path=%path%;C:\python37

https://docs.python.org/3.7/tutorial/interpreter.html#id2

20

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at

the primary prompt causes the interpreter to exit with a zero exit status. If that

doesn‟t work, you can exit the interpreter by typing the following

command: quit().

The interpreter‟s line-editing features include interactive editing, history

substitution and code completion on systems that support readline. Perhaps the

quickest check to see whether command line editing is supported is

typing Control-P to the first Python prompt you get. If it beeps, you have

command line editing; see Appendix Interactive Input Editing and History

Substitution for an introduction to the keys. If nothing appears to happen, or

if ^P is echoed, command line editing isn‟t available; you‟ll only be able to use

backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with

standard input connected to a tty device, it reads and executes commands

interactively; when called with a file name argument or with a file as standard

input, it reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which

executes the statement(s) in command, analogous to the shell‟s -c option. Since

Python statements often contain spaces or other characters that are special to the

shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked

using python -m module [arg] ..., which executes the source file for module as if

you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and

enter interactive mode afterwards. This can be done by passing -i before the

script.

Argument Passing

When known to the interpreter, the script name and additional arguments

thereafter are turned into a list of strings and assigned to the argv variable in

the sys module. You can access this list by executing import sys. The length of

the list is at least one; when no script and no arguments are given, sys.argv[0] is

an empty string. When the script name is given as '-' (meaning standard

input), sys.argv[0] is set to '-'. When -ccommand is used, sys.argv[0] is set to '-

c'. When -m module is used, sys.argv[0] is set to the full name of the located

module. Options found after -c command or -m module are not consumed by

the Python interpreter‟s option processing but left in sys.argv for the command

or module to handle.

https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-i
https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-m
https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-m

21

Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive

mode. In this mode it prompts for the next command with the primary prompt,

usually three greater-than signs (>>>); for continuation lines it prompts with

the secondary prompt, by default three dots (...). The interpreter prints a

welcome message stating its version number and a copyright notice before

printing the first prompt:

$ python3.7

Python 3.7 (default, Sep 16 2015, 09:25:04)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Continuation lines are needed when entering a multi-line construct. As an

example, take a look at this if statement:

>>>

>>>the_world_is_flat = True

>>> ifthe_world_is_flat:

... print("Be careful not to fall off!")

...

Be careful not to fall off!

In the following examples, input and output are distinguished by the presence or

absence of prompts (>>> and …): to repeat the example, you must type

everything after the prompt, when the prompt appears; lines that do not begin

with a prompt are output from the interpreter. Note that a secondary prompt on

a line by itself in an example means you must type a blank line; this is used to

end a multi-line command.

Many of the examples in this manual, even those entered at the interactive

prompt, include comments. Comments in Python start with the hash

character, #, and extend to the end of the physical line. A comment may appear

at the start of a line or following whitespace or code, but not within a string

literal. A hash character within a string literal is just a hash character. Since

comments are to clarify code and are not interpreted by Python, they may be

omitted when typing in examples.

Some examples:

https://docs.python.org/3.7/reference/compound_stmts.html#if
https://docs.python.org/3.7/glossary.html#term
https://docs.python.org/3.7/glossary.html#term-1

22

this is the first comment

spam = 1 # and this is the second comment

... and now a third!

text = "# This is not a comment because it's inside quotes."

Python uses duck typing and has typed objects but untyped variable names.

Type constraints are not checked at compile time; rather, operations on an

object may fail, signifying that the given object is not of a suitable type. Despite

being dynamically typed, Python is strongly typed, forbidding operations that

are not well-defined (for example, adding a number to a string) rather than

silently attempting to make sense of them.

Python allows programmers to define their own types using classes, which are

most often used for object-oriented programming. New instances of classes are

constructed by calling the class (for example, SpamClass() or EggsClass()),

and the classes are instances of the metaclass type (itself an instance of itself),

allowing metaprogramming and reflection.

Before version 3.0, Python had two kinds of classes: old-style and new-

style. The syntax of both styles is the same, the difference being whether the

class object is inherited from, directly or indirectly (all new-style classes inherit

from object and are instances of type). In versions of Python 2 from Python

2.2 onwards, both kinds of classes can be used. Old-style classes were

eliminated in Python 3.0.

The long term plan is to support gradual typing
[77]

 and from Python 3.5, the

syntax of the language allows specifying static types but they are not checked in

the default implementation, CPython. An experimental optional static type

checker named mypy supports compile-time type checking.

Python has the usual C language arithmetic operators (+ , - , * , / , %). It also

has ** for exponentiation, e.g. 5**3 == 125 and 9**0.5 == 3.0 , and a new

matrix multiply @ operator is included in version 3.5.
[80]

 Additionally, it has a

unary operator (~), which essentially inverts all the bits of its one argument.

For integers, this means ~x=-x-1 .
[81]

 Other operators include bitwise shift

operators x << y , which shifts x to the left y places, the same as x*(2**y) ,

and x >> y , which shifts x to the right y places, the same as x//(2**y) .
[82]

The behavior of division has changed significantly over time:
[83][why?]

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Type_system#Dynamic_type_checking_and_runtime_type_information
https://en.wikipedia.org/wiki/Strongly_typed_programming_language
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Metaclass
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-80
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-81
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-82
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-pep0238-83
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify

23

 Python 2.1 and earlier use the C division behavior. The / operator is integer

division if both operands are integers, and floating-point division otherwise.

Integer division rounds towards 0, e.g. 7/3 == 2 and -7/3 == -2 .

 Python 2.2 changes integer division to round towards negative infinity,

e.g. 7/3 == 2 and -7/3 == -3 . The floor division // operator is introduced.

So 7//3 == 2 , -7//3 == -3 , 7.5//3 == 2.0 and -7.5//3 == -3.0 . Adding from

__future__ import division causes a module to use Python 3.0 rules for

division (see next).

 Python 3.0 changes / to be always floating-point division. In Python terms,

the pre-3.0 / is classic division, the version-3.0 / is real division,

and // is floor division.

Rounding towards negative infinity, though different from most languages, adds

consistency. For instance, it means that the equation (a + b)//b == a//b + 1 is

always true. It also means that the equation b*(a//b) + a%b == a is valid for

both positive and negative values of a . However, maintaining the validity of

this equation means that while the result of a%b is, as expected, in the half-

open interval [0, b), where b is a positive integer, it has to lie in the interval (b,

0] when b is negative.

Python provides a round function for rounding a float to the nearest integer.

For tie-breaking, versions before 3 use round-away-from-zero: round(0.5) is

1.0, round(-0.5) is −1.0. Python 3 uses round to even: round(1.5) is

2, round(2.5) is 2.

Python allows boolean expressions with multiple equality relations in a manner

that is consistent with general use in mathematics. For example, the

expression a < b < c tests whether a is less than b and b is less than c . C-

derived languages interpret this expression differently: in C, the expression

would first evaluate a < b , resulting in 0 or 1, and that result would then be

compared with c .

Python has extensive built-in support for arbitrary precision arithmetic. Integers

are transparently switched from the machine-supported maximum fixed-

precision (usually 32 or 64 bits), belonging to the python type int , to arbitrary

precision, belonging to the Python type long , where needed. The latter have an

"L" suffix in their textual representation. (In Python 3, the distinction between

the int and long types was eliminated; this behavior is now entirely contained

by the int class.) The Decimal type/class in module decimal (since version

2.4) provides decimal floating point numbers to arbitrary precision and several

https://en.wikipedia.org/wiki/Half-open_interval
https://en.wikipedia.org/wiki/Half-open_interval
https://en.wikipedia.org/wiki/Rounding
https://en.wikipedia.org/wiki/Rounding#Tie-breaking
https://en.wikipedia.org/wiki/Round_to_even
https://en.wikipedia.org/wiki/Arbitrary_precision_arithmetic

24

rounding modes. The Fraction type in module fractions (since version 2.6)

provides arbitrary precision for rational

numbers.https://en.wikipedia.org/wiki/Python_(programming_language) -

cite_note-91

Due to Python's extensive mathematics library, and the third-party

library NumPy that further extends the native capabilities, it is frequently used

as a scientific scripting language to aid in problems such as numerical data

processing and manipulation.

5.1.1 PYTHON MODULES USED in the RESEARCH

NUMPY

NumPy is a library for the Python programming language, adding support

for large, multi-dimensional arrays and matrices, along with a large collection

of high-level mathematical functions to operate on these arrays. The ancestor of

NumPy, Numeric, was originally created by Jim Hugunin with contributions

from several other developers. In 2005, Travis Oliphant created NumPy by

incorporating features of the competing Numarray into Numeric, with extensive

modifications. NumPy is open-source software and has many contributors.

The Python programming language was not initially designed for

numerical computing, but attracted the attention of the scientific and

engineering community early on, so that a special interest group called matrix-

sig was founded in 1995 with the aim of defining an array computing package.

Among its members was Python designer and maintainer Guido van Rossum,

who implemented extensions to Python's syntax (in particular the indexing

syntax) to make array computing easier.

An implementation of a matrix package was completed by Jim Fulton,

then generalized by Jim Hugunin to become Numeric,[4] also variously called

Numerical Python extensions or NumPy. Hugunin, a graduate student at

Massachusetts Institute of Technology (MIT), joined the Corporation for

National Research Initiatives (CNRI) to work on JPython in 1997 leaving Paul

Dubois of Lawrence Livermore National Laboratory (LLNL) to take over as

maintainer. Other early contributors include David Ascher, Konrad Hinsen and

Travis Oliphant.

A new package called Numarray was written as a more flexible

replacement for Numeric. Like Numeric, it is now deprecated. Numarray had

faster operations for large arrays, but was slower than Numeric on small ones,

so for a time both packages were used for different use cases. The last version

of Numeric v24.2 was released on 11 November 2005 and numarray v1.5.2 was

released on 24 August 2006.

There was a desire to get Numeric into the Python standard library, but

Guido van Rossum decided that the code was not maintainable in its state then.

https://en.wikipedia.org/wiki/NumPy

25

In early 2005, NumPy developer Travis Oliphant wanted to unify the

community around a single array package and ported Numarray's features to

Numeric, releasing the result as NumPy 1.0 in 2006.[7] This new project was

part of SciPy. To avoid installing the large SciPy package just to get an array

object, this new package was separated and called NumPy. Support for Python

3 was added in 2011 with NumPy version 1.5.0.[13]

In 2011, PyPy started development on an implementation of the NumPy

API for PyPy. It is not yet fully compatible with NumPy.

NumPy targets the CPython reference implementation of Python, which is a

non-optimizing bytecode interpreter. Mathematical algorithms written for this

version of Python often run much slower than compiled equivalents. NumPy

addresses the slowness problem partly by providing multidimensional arrays

and functions and operators that operate efficiently on arrays, requiring

rewriting some code, mostly inner loops using NumPy.

Using NumPy in Python gives functionality comparable to MATLAB

since they are both interpreted,[16] and they both allow the user to write fast

programs as long as most operations work on arrays or matrices instead of

scalars. In comparison, MATLAB boasts a large number of additional

toolboxes, notably Simulink, whereas NumPy is intrinsically integrated with

Python, a more modern and complete programming language. Moreover,

complementary Python packages are available; SciPy is a library that adds more

MATLAB-like functionality and Matplotlib is a plotting package that provides

MATLAB-like plotting functionality. Internally, both MATLAB and NumPy

rely on BLAS and LAPACK for efficient linear algebra computations.

Python bindings of the widely used computer vision library OpenCV

utilize NumPy arrays to store and operate on data. Since images with multiple

channels are simply represented as three-dimensional arrays, indexing, slicing

or masking with other arrays are very efficient ways to access specific pixels of

an image. The NumPy array as universal data structure in OpenCV for images,

extracted feature points, filter kernels and many more vastly simplifies the

programming workflow and debugging.

Traits

NumPy targets the CPython reference implementation of Python, which

is a non-optimizing bytecode interpreter. Mathematical algorithms written for

this version of Python often run much slower than compiled equivalents.

NumPy addresses the slowness problem partly by providing multidimensional

arrays and functions and operators that operate efficiently on arrays, requiring

rewriting some code, mostly inner loops using NumPy.

Using NumPy in Python gives functionality comparable

to MATLAB since they are both interpreted,
[16]

 and they both allow the user to

write fast programs as long as most operations work on arrays or matrices

instead of scalars. In comparison, MATLAB boasts a large number of

additional toolboxes, notably Simulink, whereas NumPy is intrinsically

https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/NumPy#cite_note-16
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Simulink

26

integrated with Python, a more modern and complete programming language.

Moreover, complementary Python packages are available; SciPy is a library that

adds more MATLAB-like functionality and Matplotlib is a plotting package

that provides MATLAB-like plotting functionality. Internally, both MATLAB

and NumPy rely on BLAS and LAPACK for efficient linear algebra

computations.

Python bindings of the widely used computer vision library OpenCV

utilize NumPy arrays to store and operate on data. Since images with multiple

channels are simply represented as three-dimensional arrays, indexing, slicing

or masking with other arrays are very efficient ways to access specific pixels of

an image. The NumPy array as universal data structure in OpenCV for images,

extracted feature points, filter kernels and many more vastly simplifies the

programming workflow and debugging.

The ndarray data structure

The core functionality of NumPy is its "ndarray", for n-dimensional

array, data structure. These arrays are strided views on memory.
[7]

 In contrast to

Python's built-in list data structure (which, despite the name, is a dynamic

array), these arrays are homogeneously typed: all elements of a single array

must be of the same type.

Such arrays can also be views into memory buffers allocated

by C/C++, Cython, and Fortran extensions to the CPython interpreter without

the need to copy data around, giving a degree of compatibility with existing

numerical libraries. This functionality is exploited by the SciPy package, which

wraps a number of such libraries (notably BLAS and LAPACK). NumPy has

built-in support for memory-mapped ndarrays.
[7]

Limitations

Inserting or appending entries to an array is not as trivially possible as it

is with Python's lists. The np.pad(...) routine to extend arrays actually creates

new arrays of the desired shape and padding values, copies the given array into

the new one and returns it. NumPy's np.concatenate([a1,a2]) operation does not

actually link the two arrays but returns a new one, filled with the entries from

both given arrays in sequence. Reshaping the dimensionality of an array

with np.reshape(...) is only possible as long as the number of elements in the

array does not change. These circumstances originate from the fact that

NumPy's arrays must be views on contiguous memory buffers. A replacement

package called Blaze attempts to overcome this limitation.
[17]

Algorithms that are not expressible as a vectorized operation will

typically run slowly because they must be implemented in "pure Python", while

vectorization may increase memory complexity of some operations from

constant to linear, because temporary arrays must be created that are as large as

the inputs. Runtime compilation of numerical code has been implemented by

https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/Matplotlib
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/OpenCV
https://en.wikipedia.org/wiki/Array_slicing#1991:_Python
https://en.wikipedia.org/wiki/Mask_(computing)#Image_masks
https://en.wikipedia.org/wiki/Interest_point_detection
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Stride_of_an_array
https://en.wikipedia.org/wiki/NumPy#cite_note-cise-7
https://en.wikipedia.org/wiki/Dynamic_array
https://en.wikipedia.org/wiki/Dynamic_array
https://en.wikipedia.org/wiki/Dynamic_array
https://en.wikipedia.org/wiki/C_Programming_Language
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Cython
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/BLAS
https://en.wikipedia.org/wiki/LAPACK
https://en.wikipedia.org/wiki/Memory-mapped_file
https://en.wikipedia.org/wiki/NumPy#cite_note-cise-7
https://en.wikipedia.org/wiki/NumPy#cite_note-17

27

several groups to avoid these problems; open source solutions that interoperate

with NumPy include scipy.weave, numexpr
[18]

 and Numba. Cython and Pythran

are static-compiling alternatives to these.

The Basics

NumPy‟s main object is the homogeneous multidimensional array. It is a

table of elements (usually numbers), all of the same type, indexed by a tuple of

positive integers. In NumPy dimensions are called axes.

For example, the coordinates of a point in 3D space [1, 2, 1] has one axis.

That axis has 3 elements in it, so we say it has a length of 3. In the example

pictured below, the array has 2 axes. The first axis has a length of 2, the second

axis has a length of 3.

[[1., 0., 0.],

[0., 1., 2.]]

NumPy‟s array class is called ndarray. It is also known by the alias array.

Note that numpy.array is not the same as the Standard Python Library

class array.array, which only handles one-dimensional arrays and offers less

functionality. The more important attributes of an ndarray object are:

ndarray.ndim:

the number of axes (dimensions) of the array.

ndarray.shape:

the dimensions of the array. This is a tuple of integers indicating the size

of the array in each dimension. For a matrix with nrows

and m columns, shape will be (n,m). The length of the shape tuple is therefore

the number of axes, ndim.

ndarray.size

the total number of elements of the array. This is equal to the product of

the elements of shape.

ndarray.dtype

an object describing the type of the elements in the array. One can create or

specify dtype‟s using standard Python types. Additionally NumPy provides

types of its own. numpy.int32, numpy.int16, and numpy.float64 are some

examples.

ndarray.itemsize

the size in bytes of each element of the array. For example, an array of

elements of type float64 has itemsize 8 (=64/8), while one of type complex32

has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.

ndarray.data

https://en.wikipedia.org/wiki/NumPy#cite_note-18
https://en.wikipedia.org/wiki/Numba
https://en.wikipedia.org/wiki/Cython
https://en.wikipedia.org/w/index.php?title=Pythran&action=edit&redlink=1

28

the buffer containing the actual elements of the array. Normally, we won‟t need

to use this attribute because we will access the elements in an array using

indexing facilities.

An example

>>> import numpy as np

>>> a = np.arange(15).reshape(3, 5)

>>> a

array([[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9],

 [10, 11, 12, 13, 14]])

>>>a.shape

(3, 5)

>>>a.ndim

2

>>>a.dtype.name

'int64'

>>>a.itemsize

8

>>>a.size

15

>>> type(a)

<type 'numpy.ndarray'>

>>> b = np.array([6, 7, 8])

>>> b

array([6, 7, 8])

>>> type(b)

<type 'numpy.ndarray'>

Array Creation

There are several ways to create arrays.

For example, you can create an array from a regular Python list or tuple using

the array function. The type of the resulting array is deduced from the type of

the elements in the sequences.

>>>

>>> import numpy as np

>>> a = np.array([2,3,4])

>>> a

array([2, 3, 4])

>>>a.dtype

dtype('int64')

>>> b = np.array([1.2, 3.5, 5.1])

>>>b.dtype

29

dtype('float64')

A frequent error consists in calling array with multiple numeric arguments,

rather than providing a single list of numbers as an argument.

>>>

>>> a = np.array(1,2,3,4) # WRONG

>>> a = np.array([1,2,3,4]) # RIGHT

array transforms sequences of sequences into two-dimensional arrays,

sequences of sequences of sequences into three-dimensional arrays, and so on.

>>>

>>> b = np.array([(1.5,2,3), (4,5,6)])

>>> b

array([[1.5, 2. , 3.],

 [4. , 5. , 6.]])

The type of the array can also be explicitly specified at creation time:

>>>

>>> c = np.array([[1,2], [3,4]], dtype=complex)

>>> c

array([[1.+0.j, 2.+0.j],

 [3.+0.j, 4.+0.j]])

Often, the elements of an array are originally unknown, but its size is

known. Hence, NumPy offers several functions to create arrays with initial

placeholder content. These minimize the necessity of growing arrays, an

expensive operation.

The function zeros creates an array full of zeros, the function ones creates

an array full of ones, and the function empty creates an array whose initial

content is random and depends on the state of the memory. By default, the

dtype of the created array isfloat64.

>>>

>>>np.zeros((3,4))

array([[0., 0., 0., 0.],

 [0., 0., 0., 0.],

 [0., 0., 0., 0.]])

>>>np.ones((2,3,4), dtype=np.int16) # dtype can also be specified

array([[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[1, 1, 1, 1],

 [1, 1, 1, 1],

30

 [1, 1, 1, 1]]], dtype=int16)

>>>np.empty((2,3)) # uninitialized, output may vary

array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260],

[5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])

To create sequences of numbers, NumPy provides a function analogous

to range that returns arrays instead of lists.

>>>

>>>np.arange(10, 30, 5)

array([10, 15, 20, 25])

>>>np.arange(0, 2, 0.3) # it accepts float arguments

array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

When arange is used with floating point arguments, it is generally not

possible to predict the number of elements obtained, due to the finite floating

point precision. For this reason, it is usually better to use the

function linspace that receives as an argument the number of elements that we

want, instead of the step:

>>>

>>> from numpy import pi

>>>np.linspace(0, 2, 9) # 9 numbers from 0 to 2

array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])

>>> x = np.linspace(0, 2*pi, 100) # useful to evaluate function at lots of

points

>>> f = np.sin(x)

5.2 PANDAS:

Pandas is an open source, BSD-licensed library providing high-performance,

easy-to-use data structures and data analysis tools for the Python programming

language.

Pandas is a Python package providing fast, flexible, and expressive data

structures designed to make working with “relational” or “labeled” data both

easy and intuitive. It aims to be the fundamental high-level building block for

doing practical, real world data analysis in Python. Additionally, it has the

broader goal of becoming the most powerful and flexible open source data

analysis / manipulation tool available in any language. It is already well on

its way toward this goal.

pandas is well suited for many different kinds of data:

31

 Tabular data with heterogeneously-typed columns, as in an SQL

table or Excel spreadsheet

 Ordered and unordered (not necessarily fixed-frequency) time

series data.

 Arbitrary matrix data (homogeneously typed or heterogeneous)

with row and column labels

 Any other form of observational / statistical data sets. The data

actually need not be labeled at all to be placed into a pandas data

structure

The two primary data structures of pandas, Series (1-dimensional)

and DataFrame (2-dimensional), handle the vast majority of typical use cases

in finance, statistics, social science, and many areas of engineering. For R

users, DataFrame provides everything that R‟s data.frame provides and much

more. pandas is built on top of NumPy and is intended to integrate well within a

scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

 Easy handling of missing data (represented as NaN) in floating

point as well as non-floating point data

 Size mutability: columns can be inserted and deleted from

DataFrame and higher dimensional objects

 Automatic and explicit data alignment: objects can be explicitly

aligned to a set of labels, or the user can simply ignore the labels

and let Series, DataFrame, etc. automatically align the data for you

in computations

 Powerful, flexible group by functionality to perform split-apply-

combine operations on data sets, for both aggregating and

transforming data

 Make it easy to convert ragged, differently-indexed data in other

Python and NumPy data structures into DataFrame objects

 Intelligent label-based slicing, fancy indexing, and subsetting of

large data sets

 Intuitive merging and joining data sets

 Flexible reshaping and pivoting of data sets

 Hierarchical labeling of axes (possible to have multiple labels per

tick)

 Robust IO tools for loading data from flat files (CSV and

delimited), Excel files, databases, and saving / loading data from

the ultrafast HDF5 format

32

 Time series-specific functionality: date range generation and

frequency conversion, moving window statistics, moving window

linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently

experienced using other languages / scientific research environments. For data

scientists, working with data is typically divided into multiple stages: munging

and cleaning data, analyzing / modeling it, then organizing the results of the

analysis into a form suitable for plotting or tabular display. pandas is the ideal

tool for all of these tasks.

Some other notes :

 pandas is fast. Many of the low-level algorithmic bits have been

extensively tweaked in Cythoncode. However, as with anything

else generalization usually sacrifices performance. So if you focus

on one feature for your application you may be able to create a

faster specialized tool.

 pandas is a dependency of statsmodels, making it an important part

of the statistical computing ecosystem in Python.

 pandas has been used extensively in production in financial

applications.

5.3 DATA STRUCTURES

Dimensions Name Description

1 Series 1D labeled homogeneously-typed array

2 DataFrame

General 2D labeled, size-mutable tabular

structure with potentially heterogeneously-typed

column

Why more than one data structure?

The best way to think about the pandas data structures is as flexible containers

for lower dimensional data. For example, DataFrame is a container for Series,

and Series is a container for scalars. We would like to be able to insert and

remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions

which take into account the typical orientation of time series and cross-sectional

data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is

placed on the user to consider the orientation of the data set when writing

https://cython.org/
https://www.statsmodels.org/stable/index.html

33

functions; axes are considered more or less equivalent (except when C- or

Fortran-contiguousness matters for performance). In pandas, the axes are

intended to lend more semantic meaning to the data; i.e., for a particular data set

there is likely to be a “right” way to orient the data. The goal, then, is to reduce

the amount of mental effort required to code up data transformations in

downstream functions.

For example, with tabular data (DataFrame) it is more semantically helpful to

think of the index (the rows) and the columns rather than axis 0 and axis 1.

Iterating through the columns of the DataFrame thus results in more readable

code:

for col indf.columns:

 series = df[col]

do something with series

Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be

altered) but not always size-mutable. The length of a Series cannot be changed,

but, for example, columns can be inserted into a DataFrame. However, the vast

majority of methods produce new objects and leave the input data untouched. In

general we like to favor immutability where sensible.

Intro to Data Structures

We‟ll start with a quick, non-comprehensive overview of the fundamental data

structures in pandas to get you started. The fundamental behavior about data

types, indexing, and axis labeling / alignment apply across all of the objects. To

get started, import NumPy and load pandas into your namespace:

In [1]: importnumpyasnp

In [2]: importpandasaspd

Here is a basic tenet to keep in mind: data alignment is intrinsic. The link

between labels and data will not be broken unless done so explicitly by you.

34

We‟ll give a brief intro to the data structures, then consider all of the broad

categories of functionality and methods in separate sections.

Series

Series is a one-dimensional labeled array capable of holding any data type

(integers, strings, floating point numbers, Python objects, etc.). The axis labels

are collectively referred to as the index. The basic method to create a Series is

to call:

>>>s = pd.Series(data, index=index)

Here, data can be many different things:

 a Python dict

 anndarray

 a scalar value (like 5)

The passed index is a list of axis labels. Thus, this separates into a few cases

depending on what data is:

From ndarray

If data is anndarray, index must be the same length as data. If no index is

passed, one will be created having values [0, ..., len(data) - 1].

In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [4]: s

Out[4]:

a 0.469112

b -0.282863

c -1.509059

d -1.135632

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

35

e 1.212112

dtype: float64

In [5]: s.index

Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [6]: pd.Series(np.random.randn(5))

Out[6]:

0 -0.173215

1 0.119209

2 -1.044236

3 -0.861849

4 -2.104569

dtype: float64

Note

pandas supports non-unique index values. If an operation that does not support

duplicate index values is attempted, an exception will be raised at that time. The

reason for being lazy is nearly all performance-based (there are many instances

in computations, like parts of GroupBy, where the index is not used).

From dict

Series can be instantiated from dicts:

In [7]: d = {'b': 1, 'a': 0, 'c': 2}

36

In [8]: pd.Series(d)

Out[8]:

b 1

a 0

c 2

dtype: int64

Note

When the data is a dict, and an index is not passed, the Series index will be

ordered by the dict‟s insertion order, if you‟re using Python version >= 3.6 and

Pandas version >= 0.23.

If you‟re using Python < 3.6 or Pandas < 0.23, and an index is not passed,

the Series index will be the lexically ordered list of dict keys.

In the example above, if you were on a Python version lower than 3.6 or a

Pandas version lower than 0.23, the Series would be ordered by the lexical

order of the dict keys (i.e. ['a', 'b', 'c'] rather than ['b', 'a', 'c']).

If an index is passed, the values in data corresponding to the labels in the index

will be pulled out.

In [9]: d = {'a': 0., 'b': 1., 'c': 2.}

In [10]: pd.Series(d)

Out[10]:

a 0.0

b 1.0

37

c 2.0

dtype: float64

In [11]: pd.Series(d, index=['b', 'c', 'd', 'a'])

Out[11]:

b 1.0

c 2.0

d NaN

a 0.0

dtype: float64

Note

NaN (not a number) is the standard missing data marker used in pandas.

From scalar value

If data is a scalar value, an index must be provided. The value will be repeated

to match the length of index.

In [12]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])

Out[12]:

a 5.0

b 5.0

c 5.0

d 5.0

38

e 5.0

dtype: float64

Series is ndarray-like

Series acts very similarly to a ndarray, and is a valid argument to most NumPy

functions. However, operations such as slicing will also slice the index.

In [13]: s[0]

Out[13]: 0.46911229990718628

In [14]: s[:3]

Out[14]:

a 0.469112

b -0.282863

c -1.509059

dtype: float64

In [15]: s[s >s.median()]

Out[15]:

a 0.469112

e 1.212112

dtype: float64

39

In [16]: s[[4, 3, 1]]

Out[16]:

e 1.212112

d -1.135632

b -0.282863

dtype: float64

In [17]: np.exp(s)

Out[17]:

a 1.598575

b 0.753623

c 0.221118

d 0.321219

e 3.360575

dtype: float64

Note

We will address array-based indexing like s[[4, 3, 1]] in section.

Like a NumPy array, a pandas Series has a dtype.

In [18]: s.dtype

Out[18]: dtype('float64')

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dtype.html#pandas.Series.dtype

40

This is often a NumPy dtype. However, pandas and 3rd-party libraries extend

NumPy‟s type system in a few places, in which case the dtype would be

a ExtensionDtype. Some examples within pandas are Categorical

Data and Nullable Integer Data Type. See dtypes for more.

If you need the actual array backing a Series, use Series.array.

In [19]: s.array

Out[19]:

<PandasArray>

[0.46911229990718628, -0.28286334432866328, -1.5090585031735124,

 -1.1356323710171934, 1.2121120250208506]

Length: 5, dtype: float64

Accessing the array can be useful when you need to do some operation without

the index (to disable automatic alignment, for example).

Series.array will always be an ExtensionArray. Briefly, an ExtensionArray is

a thin wrapper around one or more concrete arrays like a numpy.ndarray.

Pandas knows how to take an ExtensionArray and store it in a Series or a

column of a DataFrame. See dtypes for more.

While Series is ndarray-like, if you need an actual ndarray, then

use Series.to_numpy().

In [20]: s.to_numpy()

Out[20]: array([0.4691, -0.2829, -1.5091, -1.1356, 1.2121])

Even if the Series is backed by a ExtensionArray, Series.to_numpy() will

return a NumPy ndarray.

Series is dict-like

A Series is like a fixed-size dict in that you can get and set values by index

label:

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionDtype.html#pandas.api.extensions.ExtensionDtype
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html#integer-na
http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.array.html#pandas.Series.array
http://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html#dsintro-alignment
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.array.html#pandas.Series.array
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.to_numpy.html#pandas.Series.to_numpy
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.to_numpy.html#pandas.Series.to_numpy

41

In [21]: s['a']

Out[21]: 0.46911229990718628

In [22]: s['e'] = 12.

In [23]: s

Out[23]:

a 0.469112

b -0.282863

c -1.509059

d -1.135632

e 12.000000

dtype: float64

In [24]: 'e' in s

Out[24]: True

In [25]: 'f' in s

Out[25]: False

If a label is not contained, an exception is raised:

42

>>>s['f']

KeyError: 'f'

Using the get method, a missing label will return None or specified default:

In [26]: s.get('f')

In [27]: s.get('f', np.nan)

Out[27]: nan

See also the section on attribute access.

Vectorized operations and label alignment with Series

When working with raw NumPy arrays, looping through value-by-value is

usually not necessary. The same is true when working with Series in pandas.

Series can also be passed into most NumPy methods expecting anndarray.

In [28]: s + s

Out[28]:

a 0.938225

b -0.565727

c -3.018117

d -2.271265

e 24.000000

dtype: float64

In [29]: s * 2

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-attribute-access

43

Out[29]:

a 0.938225

b -0.565727

c -3.018117

d -2.271265

e 24.000000

dtype: float64

In [30]: np.exp(s)

Out[30]:

a 1.598575

b 0.753623

c 0.221118

d 0.321219

e 162754.791419

dtype: float64

A key difference between Series and ndarray is that operations between Series

automatically align the data based on label. Thus, you can write computations

without giving consideration to whether the Series involved have the same

labels.

In [31]: s[1:] + s[:-1]

Out[31]:

44

a NaN

b -0.565727

c -3.018117

d -2.271265

e NaN

dtype: float64

The result of an operation between unaligned Series will have the union of the

indexes involved. If a label is not found in one Series or the other, the result will

be marked as missing NaN. Being able to write code without doing any explicit

data alignment grants immense freedom and flexibility in interactive data

analysis and research. The integrated data alignment features of the pandas data

structures set pandas apart from the majority of related tools for working with

labeled data.

Note

In general, we chose to make the default result of operations between differently

indexed objects yield theunion of the indexes in order to avoid loss of

information. Having an index label, though the data is missing, is typically

important information as part of a computation. You of course have the option

of dropping labels with missing data via the dropna function.

Name attribute

Series can also have a name attribute:

In [32]: s = pd.Series(np.random.randn(5), name='something')

In [33]: s

Out[33]:

45

0 -0.494929

1 1.071804

2 0.721555

3 -0.706771

4 -1.039575

Name: something, dtype: float64

In [34]: s.name

Out[34]: 'something'

The Series name will be assigned automatically in many cases, in particular

when taking 1D slices of DataFrame as you will see below.

New in version 0.18.0.

You can rename a Series with the pandas.Series.rename() method.

In [35]: s2 = s.rename("different")

In [36]: s2.name

Out[36]: 'different'

Note that s and s2 refer to different objects.

5.4 DataFrame

DataFrame is a 2-dimensional 45 abelled data structure with columns of

potentially different types. You can think of it like a spreadsheet or SQL table,

or a dict of Series objects. It is generally the most commonly used pandas

object. Like Series, DataFrame accepts many different kinds of input:

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.rename.html#pandas.Series.rename

46

 Dict of 1D ndarrays, lists, dicts, or Series

 2-D numpy.ndarray

 Structured or record ndarray

 A Series

 Another DataFrame

Along with the data, you can optionally pass index (row labels)

and columns (column labels) arguments. If you pass an index and / or columns,

you are guaranteeing the index and / or columns of the resulting DataFrame.

Thus, a dict of Series plus a specific index will discard all data not matching up

to the passed index.

If axis labels are not passed, they will be constructed from the input data based

on common sense rules.

Note

When the data is a dict, and columns is not specified, the DataFrame columns

will be ordered by the dict‟s insertion order, if you are using Python version >=

3.6 and Pandas >= 0.23.

If you are using Python < 3.6 or Pandas < 0.23, and columns is not specified,

the DataFrame columns will be the lexically ordered list of dict keys.

From dict of Series or dicts

The resulting index will be the union of the indexes of the various Series. If

there are any nested dicts, these will first be converted to Series. If no columns

are passed, the columns will be the ordered list of dict keys.

In [37]: d = {„one‟: pd.Series([1., 2., 3.], index=[„a‟, „b‟, „c‟]),

….: „two‟: pd.Series([1., 2., 3., 4.], index=[„a‟, „b‟, „c‟, „d‟])}

….:

In [38]: df = pd.DataFrame(d)

In [39]: df

https://docs.scipy.org/doc/numpy/user/basics.rec.html

47

Out[39]:

one two

a 1.0 1.0

b 2.0 2.0

c 3.0 3.0

d NaN 4.0

In [40]: pd.DataFrame(d, index=[„d‟, „b‟, „a‟])

Out[40]:

one two

d NaN 4.0

b 2.0 2.0

a 1.0 1.0

In [41]: pd.DataFrame(d, index=[„d‟, „b‟, „a‟], columns=[„two‟, „three‟])

Out[41]:

 two three

d 4.0NaN

b 2.0NaN

a 1.0NaN

The row and column labels can be accessed respectively by accessing

the index and columns attributes:

Note

48

When a particular set of columns is passed along with a dict of data, the passed

columns override the keys in the dict.

In [42]: df.index

Out[42]: Index([„a‟, „b‟, „c‟, „d‟], dtype=‟object‟)

In [43]: df.columns

Out[43]: Index([„one‟, „two‟], dtype=‟object‟)

From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly

also be the same length as the arrays. If no index is passed, the result will

be range(n), where n is the array length.

In [44]: d = {„one‟: [1., 2., 3., 4.],

….: „two‟: [4., 3., 2., 1.]}

….:

In [45]: pd.DataFrame(d)

Out[45]:

one two

2 1.0 4.0

3 2.0 3.0

2 3.0 2.0

3 4.0 1.0

In [46]: pd.DataFrame(d, index=[„a‟, „b‟, „c‟, „d‟])

Out[46]:

one two

49

a 1.0 4.0

b 2.0 3.0

c 3.0 2.0

d 4.0 1.0

From structured or record array

This case is handled identically to a dict of arrays.

In [47]: data = np.zeros((2,), dtype=[(„A‟, „i4‟), („B‟, „f4‟), („C‟, „a10‟)])

In [48]: data[:] = [(1, 2., „Hello‟), (2, 3., “World”)]

In [49]: pd.DataFrame(data)

Out[49]:

 A B C

4 1 2.0b‟Hello‟

5 2 3.0b‟World‟

In [50]: pd.DataFrame(data, index=[„first‟, „second‟])

Out[50]:

 A B C

first 1 2.0b‟Hello‟

second 2 3.0 b‟World‟

In [51]: pd.DataFrame(data, columns=[„C‟, „A‟, „B‟])

Out[51]:

C A B

50

6 b‟Hello‟ 1 2.0

7 b‟World‟ 2 3.0

Note

DataFrame is not intended to work exactly like a 2-dimensional NumPy

ndarray.

From a list of dicts

In [52]: data2 = [{„a‟: 1, „b‟: 2}, {„a‟: 5, „b‟: 10, „c‟: 20}]

In [53]: pd.DataFrame(data2)

Out[53]:

 a b c

0 1 2 NaN

8 5 10 20.0

In [54]: pd.DataFrame(data2, index=[„first‟, „second‟])

Out[54]:

 a b c

first 1 2 NaN

second 5 10 20.0

In [55]: pd.DataFrame(data2, columns=[„a‟, „b‟])

Out[55]:

 a b

51

0 1 2

9 5 10

From a dict of tuples

You can automatically create a MultiIndexed frame by passing a tuples

dictionary.

In [56]: pd.DataFrame({(„a‟, „b‟): {(„A‟, „B‟): 1, („A‟, „C‟): 2},

….: („a‟, „a‟): {(„A‟, „C‟): 3, („A‟, „B‟): 4},

….: („a‟, „c‟): {(„A‟, „B‟): 5, („A‟, „C‟): 6},

….: („b‟, „a‟): {(„A‟, „C‟): 7, („A‟, „B‟): 8},

….: („b‟, „b‟): {(„A‟, „D‟): 9, („A‟, „B‟): 10}})

….:

Out[56]:

 a b

 b a c a b

A B 1.0 4.0 5.0 8.0 10.0

C 2.0 3.0 6.0 7.0 NaN

D NaNNaNNaNNaN 9.0

From a Series

The result will be a DataFrame with the same index as the input Series, and with

one column whose name is the original name of the Series (only if no other

column name provided).

Missing Data

52

Much more will be said on this topic in the Missing data section. To construct a

DataFrame with missing data, we use np.nan to represent missing values.

Alternatively, you may pass a numpy.MaskedArray as the data argument to the

DataFrame constructor, and its masked entries will be considered missing.

Alternate Constructors

DataFrame.from_dict

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and

returns a DataFrame. It operates like the DataFrame constructor except for

the orient parameter which is „columns‟ by default, but which can be set

to „index‟ in order to use the dict keys as row labels.

In [57]: pd.DataFrame.from_dict(dict([(„A‟, [1, 2, 3]), („B‟, [4, 5, 6])]))

Out[57]:

A B

10 1 4

11 2 5

2 3 6

If you pass orient=‟index‟, the keys will be the row labels. In this case, you can

also pass the desired column names:

In [58]: pd.DataFrame.from_dict(dict([(„A‟, [1, 2, 3]), („B‟, [4, 5, 6])]),

….: orient=‟index‟, columns=[„one‟, „two‟, „three‟])

….:

Out[58]: one two three

A 1 2 3

B 4 5 6

DataFrame.from_records

http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data

53

DataFrame.from_records takes a list of tuples or an ndarray with structured

dtype. It works analogously to the normal DataFrame constructor, except that

the resulting DataFrame index may be a specific field of the structured dtype.

For example:

In [59]: data

Out[59]:

array([(1, 2., b‟Hello‟), (2, 3., b‟World‟)],

dtype=[(„A‟, „<i4‟), („B‟, „<f4‟), („C‟, „S10‟)])

In [60]: pd.DataFrame.from_records(data, index=‟C‟)

Out[60]:

 A BC

b‟Hello‟ 1 2.0

b‟World‟ 2 3.0

Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series

objects. Getting, setting, and deleting columns works with the same syntax as

the analogous dict operations:

In [61]: df[„one‟]

Out[61]:

a 1.0

b 2.0

c 3.0

d NaN

54

Name: one, dtype: float64

In [62]: df[„three‟] = df[„one‟] * df[„two‟]

In [63]: df[„flag‟] = df[„one‟] > 2

In [64]: df

Out[64]:

one two three flag

a 1.0 1.0 1.0 False

b 2.0 2.0 4.0 False

c 3.0 3.0 9.0 True

d NaN 4.0 NaN False

Columns can be deleted or popped like with a dict:

In [65]: deldf[„two‟]

In [66]: three = df.pop(„three‟)

In [67]: df

Out[67]:

 one flag

a 1.0 False

b 2.0 False

c 3.0 True

d NaN False

55

When inserting a scalar value, it will naturally be propagated to fill the column:

In [68]: df[„foo‟] = „bar‟

In [69]: df

Out[69]:

 one flag foo

a 1.0 False bar

b 2.0 False bar

c 3.0 True bar

d NaN False bar

When inserting a Series that does not have the same index as the DataFrame, it

will be conformed to the DataFrame‟s index:

In [70]: df[„one_trunc‟] = df[„one‟][:2]

In [71]: df

Out[71]:

 one flag fooone_trunc

a 1.0 False bar 1.0

b 2.0 False bar 2.0

c 3.0 True bar NaN

d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the

DataFrame‟s index.

56

By default, columns get inserted at the end. The insert function is available to

insert at a particular location in the columns:

In [72]: df.insert(1, „bar‟, df[„one‟])

In [73]: df

Out[73]:

one bar flag foo one_trunc

a 1.0 1.0 False bar 1.0

b 2.0 2.0 False bar 2.0

c 3.0 3.0 True bar NaN

d NaNNaN False bar NaN

Assigning New Columns in Method Chains

Inspired by dplyr‟s mutate verb, DataFrame has an assign() method that allows

you to easily create new columns that are potentially derived from existing

columns.

In [74]: iris = pd.read_csv(„data/iris.data‟)

In [75]: iris.head()

Out[75]:

SepalLengthSepalWidthPetalLengthPetalWidth Name

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

https://dplyr.tidyverse.org/reference/mutate.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign

57

4 5.0 3.6 1.4 0.2 Iris-setosa

In [76]: (iris.assign(sepal_ratio=iris[„SepalWidth‟] / iris[„SepalLength‟])

….: .head())

….:

Out[76]:

SepalLengthSepalWidthPetalLengthPetalWidth Name sepal_ratio

0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275

1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245

2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851

3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913

4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000

In the example above, we inserted a precomputed value. We can also pass in a

function of one argument to be evaluated on the DataFrame being assigned to.

In [77]: iris.assign(sepal_ratio=lambda x: (x[„SepalWidth‟] /

x[„SepalLength‟])).head()

Out[77]:

SepalLengthSepalWidthPetalLengthPetalWidth Name sepal_ratio

0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275

1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245

2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851

3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913

58

4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000

assign always returns a copy of the data, leaving the original DataFrame

untouched.

Passing a callable, as opposed to an actual value to be inserted, is useful when

you don‟t have a reference to the DataFrame at hand. This is common when

using assign in a chain of operations. For example, we can limit the

DataFrameto just those observations with a Sepal Length greater than 5,

calculate the ratio, and plot:

In [78]: (iris.query(„SepalLength> 5‟)

….: .assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength,

….: PetalRatio=lambda x: x.PetalWidth / x.PetalLength)

….: .plot(kind=‟scatter‟, x=‟SepalRatio‟, y=‟PetalRatio‟))

….:

Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2b527b1a58>

Fig 6 Matplot Axes

Since a function is passed in, the function is computed on the DataFrame being

assigned to. Importantly, this is the DataFramethat‟s been filtered to those rows

with sepal length greater than 5. The filtering happens first, and then the ratio

calculations. This is an example where we didn‟t have a reference to

the filtered DataFrame available.

59

The function signature for assign is simply **kwargs. The keys are the column

names for the new fields, and the values are either a value to be inserted (for

example, a Series or NumPy array), or a function of one argument to be called

on the DataFrame. A copy of the original DataFrame is returned, with the new

values inserted.

Changed in version 0.23.0.

Starting with Python 3.6 the order of **kwargs is preserved. This allows

for dependent assignment, where an expression later in **kwargs can refer to a

column created earlier in the same assign().

In [79]: dfa = pd.DataFrame({“A”: [1, 2, 3],

….: “B”: [4, 5, 6]})

….:

In [80]: dfa.assign(C=lambda x: x[„A‟] + x[„B‟],

….: D=lambda x: x[„A‟] + x[„C‟])

….:

Out[80]:

A B C D

0 1 4 5 6

1 2 5 7 9

2 3 6 9 12

In the second expression, x[„C‟] will refer to the newly created column, that‟s

equal to dfa[„A‟] + dfa[„B‟].

To write code compatible with all versions of Python, split the assignment in

two.

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign

60

In [81]: dependent = pd.DataFrame({“A”: [1, 1, 1]})

In [82]: (dependent.assign(A=lambda x: x[„A‟] + 1)

….: .assign(B=lambda x: x[„A‟] + 2))

….:

Out[82]:

A B

12 2 4

13 2 4

2 2 4

5.4MATPLOTLIB:

Matplotlib is a Python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms. Matplotlib can be used in Python scripts, the Python

and IPython shells, the Jupyter notebook, web application servers, and four

graphical user interface toolkits.

￼

http://ipython.org/
http://jupyter.org/

61

￼

Matplotlib tries to make easy things easy and hard things possible. You can

generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots,

etc., with just a few lines of code. For examples, see the sample

plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-like interface,

particularly when combined with IPython. For the power user, you have full

control of line styles, font properties, axes properties, etc, via an object oriented

interface or via a set of functions familiar to MATLAB users.

Installing an official release

Matplotlib and its dependencies are available as wheel packages for macOS,

Windows and Linux distributions:

python -m pip install -U pip

python -m pip install -U matplotlib

Although not required, we suggest also installing IPython for interactive use. To

easily install a complete Scientific Python stack, see Scientific Python

Distributions below.

macOS

To use the native OSX backend you will need a framework build build of

Python.

Test data

The wheels (*.whl) on the PyPI download page do not contain test data or

example code.

If you want to try the many demos that come in the Matplotlib source

distribution, download the *.tar.gz file and look in the examples subdirectory.

To run the test suite:

https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/gallery/index.html
https://matplotlib.org/3.0.3/users/installing.html#id3
https://matplotlib.org/3.0.3/users/installing.html#install-scipy-dists
https://matplotlib.org/3.0.3/users/installing.html#install-scipy-dists
https://matplotlib.org/3.0.3/users/installing.html#id4
https://matplotlib.org/3.0.3/faq/osx_framework.html#osxframework-faq
https://matplotlib.org/3.0.3/users/installing.html#id5
https://pypi.python.org/pypi/matplotlib/

62

 extract the lib/matplotlib/tests or lib/mpl_toolkits/tests directories from

the source distribution;

 install test dependencies: pytest, Pillow, MiKTeX, GhostScript, ffmpeg,

avconv, ImageMagick, and Inkscape;

 run python -mpytest.

Third-party distributions of Matplotlib:

Scientific Python Distributions:

Anaconda and Canopy and ActiveState are excellent choices that "just work"

out of the box for Windows, macOS and common Linux

platforms. WinPython is an option for Windows users. All of these distributions

include Matplotlib and lots of other useful (data) science tools.

Linux: using your package manager

If you are on Linux, you might prefer to use your package manager. Matplotlib

is packaged for almost every major Linux distribution.

 Debian / Ubuntu: sudo apt-get install python3-matplotlib

 Fedora: sudo dnf install python3-matplotlib

 Red Hat: sudo yum install python3-matplotlib

 Arch: sudo pacman -S python-matplotlib

Installing from source

If you are interested in contributing to Matplotlib development, running the

latest source code, or just like to build everything yourself, it is not difficult to

build Matplotlib from source. Grab the latest tar.gz release file from the PyPI

files page, or if you want to develop Matplotlib or just need the latest bugfixed

version, grab the latest git version Install from source.

The standard environment variables CC, CXX, PKG_CONFIG are respected.

This means you can set them if your toolchain is prefixed. This may be used for

cross compiling.

export CC=x86_64-pc-linux-gnu-gcc

export CXX=x86_64-pc-linux-gnu-g++

export PKG_CONFIG=x86_64-pc-linux-gnu-pkg-config

Once you have satisfied the requirements detailed below (mainly Python,

NumPy, libpng and FreeType), you can build Matplotlib.

cd matplotlib

python -mpipinstall .

https://pypi.python.org/pypi/pytest
https://inkscape.org/
https://matplotlib.org/3.0.3/users/installing.html#id6
https://matplotlib.org/3.0.3/users/installing.html#id7
https://www.continuum.io/downloads/
https://www.enthought.com/products/canopy/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/
https://matplotlib.org/3.0.3/users/installing.html#id8
https://matplotlib.org/3.0.3/users/installing.html#id9
https://pypi.python.org/pypi/matplotlib/
https://pypi.python.org/pypi/matplotlib/
https://pypi.python.org/pypi/matplotlib/
https://matplotlib.org/3.0.3/faq/installing_faq.html#install-from-git

63

We provide a setup.cfg file which you can use to customize the build process.

For example, which default backend to use, whether some of the optional

libraries that Matplotlib ships with are installed, and so on. This file will be

particularly useful to those packaging Matplotlib.

If you have installed prerequisites to nonstandard places and need to inform

Matplotlib where they are, edit setupext.py and add the base dirs to

the basedir dictionary entry for your sys.platform; e.g., if the header of some

required library is in /some/path/include/someheader.h, put /some/path in

the basedir list for your platform.

Dependencies

Matplotlib requires the following dependencies:

 Python (>= 3.5)

 FreeType (>= 2.3)

 libpng (>= 1.2)

 NumPy (>= 1.10.0)

 setuptools

 cycler (>= 0.10.0)

 dateutil (>= 2.1)

 kiwisolver (>= 1.0.0)

 pyparsing

Optionally, you can also install a number of packages to enable better user

interface toolkits. See What is a backend? for more details on the optional

Matplotlib backends and the capabilities they provide.

 tk (>= 8.3, != 8.6.0 or 8.6.1): for the Tk-based backends;

 PyQt4 (>= 4.6) or PySide (>= 1.0.3): for the Qt4-based backends;

 PyQt5: for the Qt5-based backends;

 PyGObject or pgi (>= 0.0.11.2): for the GTK3-based backends;

 wxpython (>= 4): for the WX-based backends;

 cairocffi (>= 0.8) or pycairo: for the cairo-based backends;

 Tornado: for the WebAgg backend;

For better support of animation output format and image file formats, LaTeX,

etc., you can install the following:

 ffmpeg/avconv: for saving movies;

 ImageMagick: for saving animated gifs;

https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://matplotlib.org/3.0.3/users/installing.html#id10
https://www.python.org/downloads/
https://www.freetype.org/
http://www.libpng.org/
http://www.numpy.org/
https://setuptools.readthedocs.io/en/latest/
http://matplotlib.org/cycler/
https://pypi.python.org/pypi/python-dateutil
https://github.com/nucleic/kiwi
https://pyparsing.wikispaces.com/
https://matplotlib.org/3.0.3/tutorials/introductory/usage.html#what-is-a-backend
https://matplotlib.org/3.0.3/glossary/index.html#term-tk
https://pypi.python.org/pypi/PyQt4
https://pypi.python.org/pypi/PySide
https://pypi.python.org/pypi/PyQt5
https://pypi.org/project/PyGObject/
https://pypi.org/project/pgi/
https://matplotlib.org/3.0.3/glossary/index.html#term-wxpython
https://cairocffi.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pycairo
https://pypi.python.org/pypi/tornado
https://www.ffmpeg.org/
https://libav.org/avconv.html
https://www.imagemagick.org/script/index.php

64

 Pillow (>= 3.4): for a larger selection of image file formats: JPEG, BMP,

and TIFF image files;

 LaTeX and GhostScript (>=9.0) : for rendering text with LaTeX.

Building on Linux

It is easiest to use your system package manager to install the dependencies.

If you are on Debian/Ubuntu, you can get all the dependencies required to build

Matplotlib with:

sudo apt-get build-dep python-matplotlib

If you are on Fedora, you can get all the dependencies required to build

Matplotlib with:

sudodnfbuilddep python-matplotlib

If you are on RedHat, you can get all the dependencies required to build

Matplotlib by first installing yum-builddep and then running:

su -c "yum-builddep python-matplotlib"

These commands do not build Matplotlib, but instead get and install the build

dependencies, which will make building from source easier.

Building on macOS

The build situation on macOS is complicated by the various places one can get

the libpng and FreeType requirements (MacPorts, Fink, /usr/X11R6), the

different architectures (e.g., x86, ppc, universal), and the different macOS

versions (e.g., 10.4 and 10.5). We recommend that you build the way we do for

the macOS release: get the source from the tarball or the git repository and

install the required dependencies through a third-party package manager. Two

widely used package managers are Homebrew, and MacPorts. The following

example illustrates how to install libpng and FreeType using brew:

brew install libpngfreetypepkg-config

If you are using MacPorts, execute the following instead:

port install libpngfreetypepkgconfig

After installing the above requirements, install Matplotlib from source by

executing:

python -mpipinstall .

https://pillow.readthedocs.io/en/latest/
https://miktex.org/
https://ghostscript.com/download/
https://matplotlib.org/3.0.3/users/installing.html#id11
https://matplotlib.org/3.0.3/users/installing.html#id12

65

Note that your environment is somewhat important. Some conda users have

found that, to run the tests, their PYTHONPATH must include

/path/to/anaconda/.../site-packages and their

DYLD_FALLBACK_LIBRARY_PATH must include /path/to/anaconda/lib.

Building on Windows

The Python shipped from https://www.python.org is compiled with Visual

Studio 2015 for 3.5+. Python extensions should be compiled with the same

compiler, see e.g. https://packaging.python.org/guides/packaging-binary-

extensions/#setting-up-a-build-environment-on-windows for how to set up a

build environment.

Since there is no canonical Windows package manager, the methods for

building FreeType, zlib, and libpng from source code are documented as a build

script at matplotlib-winbuild.

There are a few possibilities to build Matplotlib on Windows:

 Wheels via matplotlib-winbuild

 Wheels by using conda packages (see below)

 Conda packages (see below)

Wheel builds using conda packages

This is a wheel build, but we use conda packages to get all the requirements.

The binary requirements (png, FreeType,...) are statically linked and therefore

not needed during the wheel install.

Set up the conda environment. Note, if you want a qt backend, add pyqt to the

list of conda packages.

conda create -n "matplotlib_build" python=3.7 numpy python-dateutilpyparsing

tornado cycler tklibpngzlibfreetypemsinttypes

conda activate matplotlib_build

For building, call the script build_alllocal.cmd in the root folder of the

repository:

build_alllocal.cmd

https://matplotlib.org/3.0.3/users/installing.html#id13
https://github.com/jbmohler/matplotlib-winbuild
https://github.com/jbmohler/matplotlib-winbuild
https://matplotlib.org/3.0.3/users/installing.html#id14

66

General Concepts

matplotlib has an extensive codebase that can be daunting to many new users.

However, most of matplotlib can be understood with a fairly simple conceptual

framework and knowledge of a few important points.

Plotting requires action on a range of levels, from the most general (e.g.,

'contour this 2-D array') to the most specific (e.g., 'color this screen pixel red').

The purpose of a plotting package is to assist you in visualizing your data as

easily as possible, with all the necessary control -- that is, by using relatively

high-level commands most of the time, and still have the ability to use the low-

level commands when needed.

Therefore, everything in matplotlib is organized in a hierarchy. At the top of the

hierarchy is the matplotlib "state-machine environment" which is provided by

the matplotlib.pyplot module. At this level, simple functions are used to add

plot elements (lines, images, text, etc.) to the current axes in the current figure.

Note

Pyplot's state-machine environment behaves similarly to MATLAB and should

be most familiar to users with MATLAB experience.

The next level down in the hierarchy is the first level of the object-oriented

interface, in which pyplot is used only for a few functions such as figure

creation, and the user explicitly creates and keeps track of the figure and axes

objects. At this level, the user uses pyplot to create figures, and through those

figures, one or more axes objects can be created. These axes objects are then

used for most plotting actions.

For even more control -- which is essential for things like embedding matplotlib

plots in GUI applications -- the pyplot level may be dropped completely,

leaving a purely object-oriented approach.

sphinx_gallery_thumbnail_number = 3

importmatplotlib.pyplotasplt

importnumpyasnp

https://matplotlib.org/3.0.3/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot

67

Parts of a Figure

Fig 7 Anatomy of Matplotlib

The whole figure. The figure keeps track of all the child Axes, a smattering of

'special' artists (titles, figure legends, etc), and the canvas. (Don't worry too

much about the canvas, it is crucial as it is the object that actually does the

drawing to get you your plot, but as the user it is more-or-less invisible to you).

A figure can have any number of Axes, but to be useful should have at least

one.

5.5 SEABORN:

Seaborn is a Python data visualization library based on matplotlib. It provides a

high-level interface for drawing attractive and informative statistical graphics.

An introduction to seaborn

Seaborn is a library for making statistical graphics in Python. It is built on top

of matplotlib and closely integrated with pandas data structures.

Here is some of the functionality that seaborn offers:

https://matplotlib.org/3.0.3/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/3.0.3/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/
https://matplotlib.org/
https://pandas.pydata.org/

68

 A dataset-oriented API for examining relationships between multiple

variables

 Specialized support for using categorical variables to

show observations or aggregate statistics

 Options for visualizing univariate or bivariate distributions and

for comparing them between subsets of data

 Automatic estimation and plotting of linear regression models for

different kinds dependent variables

 Convenient views onto the overall structure of complex datasets

 High-level abstractions for structuring multi-plot grids that let you easily

build complex visualizations

 Concise control over matplotlib figure styling with several built-in

themes

 Tools for choosing color palettes that faithfully reveal patterns in your

data

Seaborn aims to make visualization a central part of exploring and

understanding data. Its dataset-oriented plotting functions operate on dataframes

and arrays containing whole datasets and internally perform the necessary

semantic mapping and statistical aggregation to produce informative plots.

Here‟s an example of what this means:

importseabornassns

sns.set()

tips = sns.load_dataset("tips")

sns.relplot(x="total_bill", y="tip", col="time",

 hue="smoker", style="smoker", size="size",

 data=tips);

https://seaborn.pydata.org/examples/scatter_bubbles.html#scatter-bubbles
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/jitter_stripplot.html#jitter-stripplot
https://seaborn.pydata.org/examples/pointplot_anova.html#pointplot-anova
https://seaborn.pydata.org/examples/distplot_options.html#distplot-options
https://seaborn.pydata.org/examples/joint_kde.html#joint-kde
https://seaborn.pydata.org/examples/horizontal_boxplot.html#horizontal-boxplot
https://seaborn.pydata.org/examples/anscombes_quartet.html#anscombes-quartet
https://seaborn.pydata.org/examples/logistic_regression.html#logistic-regression
https://seaborn.pydata.org/examples/scatterplot_matrix.html#scatterplot-matrix
https://seaborn.pydata.org/examples/faceted_histogram.html#faceted-histogram
https://seaborn.pydata.org/examples/pair_grid_with_kde.html#pair-grid-with-kde
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
https://seaborn.pydata.org/tutorial/color_palettes.html#palette-tutorial

69

Fig 8 Seaborn plot

A few things have happened here. Let‟s go through them one by one:

1. We import seaborn, which is the only library necessary for this simple

example.

importseabornassns

Behind the scenes, seaborn uses matplotlib to draw plots. Many tasks can be

accomplished with only seaborn functions, but further customization might

require using matplotlib directly. This is explained in more detail below. For

interactive work, it‟s recommended to use a Jupyter/IPython interface

in matplotlib mode, or else you‟ll have to call matplotlib.pyplot.show when you

want to see the plot.

2. We apply the default default seaborn theme, scaling, and color palette.

sns.set()

This uses the matplotlib rcParam system and will affect how all matplotlib plots

look, even if you don‟t make them with seaborn. Beyond the default theme,

there are several other options, and you can independently control the style and

scaling of the plot to quickly translate your work between presentation contexts

(e.g., making a plot that will have readable fonts when projected during a talk).

If you like the matplotlib defaults or prefer a different theme, you can skip this

step and still use the seaborn plotting functions.

3. We load one of the example datasets.

tips = sns.load_dataset("tips")

https://seaborn.pydata.org/introduction.html#intro-plot-customization
https://ipython.readthedocs.io/en/stable/interactive/plotting.html
https://matplotlib.org/users/customizing.html
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial

70

Most code in the docs will use the load_dataset() function to get quick access

to an example dataset. There‟s nothing particularly special about these datasets;

they are just pandas dataframes, and we could have loaded them

with pandas.read_csv or build them by hand. Many examples use the “tips”

dataset, which is very boring but quite useful for demonstration. The tips dataset

illustrates the “tidy” approach to organizing a dataset. You‟ll get the most out of

seaborn if your datasets are organized this way, and it is explained in more

detail below.

4. We draw a faceted scatter plot with multiple semantic variables.

sns.relplot(x="total_bill", y="tip", col="time",

 hue="smoker", style="smoker", size="size",

 data=tips)

This particular plot shows the relationship between five variables in the tips

dataset. Three are numeric, and two are categorical. Two numeric variables

(total_bill and tip) determined the position of each point on the axes, and the

third (size) determined the size of each point. One categorical variable split the

dataset onto two different axes (facets), and the other determined the color and

shape of each point.

All of this was accomplished using a single call to the seaborn

function relplot(). Notice how we only provided the names of the variables in

the dataset and the roles that we wanted them to play in the plot. Unlike when

using matplotlib directly, it wasn‟t necessary to translate the variables into

parameters of the visualization (e.g., the specific color or marker to use for each

category). That translation was done automatically by seaborn. This lets the

user stay focused on the question they want the plot to answer.

API abstraction across visualizations

There is no universal best way to visualize data. Different questions are best

answered by different kinds of visualizations. Seaborn tries to make it easy to

switch between different visual representations that can be parameterized with

the same dataset-oriented API.

The function relplot() is named that way because it is designed to visualize

many different statistical relationships. While scatter plots are a highly effective

way of doing this, relationships where one variable represents a measure of time

are better represented by a line. The relplot() function has a

convenient kind parameter to let you easily switch to this alternate

representation:

https://seaborn.pydata.org/generated/seaborn.load_dataset.html#seaborn.load_dataset
https://seaborn.pydata.org/introduction.html#intro-tidy-data
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot

71

dots = sns.load_dataset("dots")

sns.relplot(x="time", y="firing_rate", col="align",

 hue="choice", size="coherence", style="choice",

facet_kws=dict(sharex=False),

 kind="line", legend="full", data=dots);

Fig 9 Seaborn Scatter Plot

Notice how the size and style parameters are shared across the scatter and line

plots, but they affect the two visualizations differently (changing marker area

and symbol vs line width and dashing). We did not need to keep those details in

mind, letting us focus on the overall structure of the plot and the information we

want it to convey.

Statistical estimation and error bars

Often we are interested in the average value of one variable as a function of

other variables. Many seaborn functions can automatically perform the

statistical estimation that is neccesary to answer these questions:

fmri = sns.load_dataset("fmri")

sns.relplot(x="timepoint", y="signal", col="region",

 hue="event", style="event",

 kind="line", data=fmri);

72

Fig 10 Implot

When statistical values are estimated, seaborn will use bootstrapping to

compute confidence intervals and draw error bars representing the uncertainty

of the estimate.

Statistical estimation in seaborn goes beyond descriptive statisitics. For

example, it is also possible to enhance a scatterplot to include a linear

regression model (and its uncertainty) using lmplot():

sns.lmplot(x="total_bill", y="tip", col="time", hue="smoker",

 data=tips);

Fig 11 Specialized Categorical Plots

Specialized categorical plots

Standard scatter and line plots visualize relationships between numerical

variables, but many data analyses involve categorical variables. There are

https://seaborn.pydata.org/generated/seaborn.lmplot.html#seaborn.lmplot

73

several specialized plot types in seaborn that are optimized for visualizing this

kind of data. They can be accessed through catplot(). Similar to relplot(), the

idea of catplot() is that it exposes a common dataset-oriented API that

generalizes over different representations of the relationship between one

numeric variable and one (or more) categorical variables.

These representations offer different levels of granularity in their presentation of

the underlying data. At the finest level, you may wish to see every observation

by drawing a scatter plot that adjusts the positions of the points along the

categorical axis so that they don‟t overlap:

sns.catplot(x="day", y="total_bill", hue="smoker",

 kind="swarm", data=tips);

Fig 12 Kernal Density Plot

Alternately, you could use kernel density estimation to represent the underlying

distribution that the points are sampled from:

sns.catplot(x="day", y="total_bill", hue="smoker",

 kind="violin", split=True, data=tips);

https://seaborn.pydata.org/generated/seaborn.catplot.html#seaborn.catplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.catplot.html#seaborn.catplot

74

Fig 13 Mean Value plot

Or you could show the only mean value and its confidence interval within each

nested category:

sns.catplot(x="day", y="total_bill", hue="smoker",

 kind="bar", data=tips);

Fig 14 Bar plot

75

Figure-level and axes-level functions

How do these tools work? It‟s important to know about a major distinction

between seaborn plotting functions. All of the plots shown so far have been

made with “figure-level” functions. These are optimized for exploratory

analysis because they set up the matplotlib figure containing the plot(s) and

make it easy to spread out the visualization across multiple axes. They also

handle some tricky business like putting the legend outside the axes. To do

these things, they use a seaborn FacetGrid.

Each different figure-level plot kind combines a particular “axes-level” function

with the FacetGrid object. For example, the scatter plots are drawn using

the scatterplot() function, and the bar plots are drawn using

the barplot() function. These functions are called “axes-level” because they

draw onto a single matplotlib axes and don‟t otherwise affect the rest of the

figure.

The upshot is that the figure-level function needs to control the figure it lives in,

while axes-level functions can be combined into a more complex matplotlib

figure with other axes that may or may not have seaborn plots on them:

importmatplotlib.pyplotasplt

f, axes = plt.subplots(1, 2, sharey=True, figsize=(6, 4))

sns.boxplot(x="day", y="tip", data=tips, ax=axes[0])

sns.scatterplot(x="total_bill", y="tip", hue="day", data=tips, ax=axes[1]);

Controling the size of the figure-level functions works a little bit differently

than it does for other matplotlib figures. Instead of setting the overall figure

size, the figure-level functions are parameterized by the size of each facet. And

instead of setting the height and width of each facet, you control the height

and aspect ratio (ratio of width to height). This parameterization makes it easy

to control the size of the graphic without thinking about exactly how many rows

and columns it will have, although it can be a source of confusion:

sns.relplot(x="time", y="firing_rate", col="align",

 hue="choice", size="coherence", style="choice",

 height=4.5, aspect=2 / 3,

facet_kws=dict(sharex=False),

 kind="line", legend="full", data=dots);

https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot
https://seaborn.pydata.org/generated/seaborn.barplot.html#seaborn.barplot

76

The way you can tell whether a function is “figure-level” or “axes-level” is

whether it takes an ax= parameter. You can also distinguish the two classes by

their output type: axes-level functions return the matplotlib axes, while figure-

level functions return the FacetGrid.

Visualizing dataset structure

There are two other kinds of figure-level functions in seaborn that can be used

to make visualizations with multiple plots. They are each oriented towards

illuminating the structure of a dataset. One, jointplot(), focuses on a single

relationship:

iris = sns.load_dataset("iris")

sns.jointplot(x="sepal_length", y="petal_length", data=iris);

Fig 15 Visualizing dataset structure

https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot

77

The other, pairplot(), takes a broader view, showing all pairwise relationships

and the marginal distributions, optionally conditioned on a categorical variable :

sns.pairplot(data=iris, hue="species");

Fig 16 Pairplot

https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot

78

Both jointplot() and pairplot() have a few different options for visual

representation, and they are built on top of classes that allow more thoroughly

customized multi-plot figures (JointGrid and PairGrid, respectively).

Customizing plot appearance

The plotting functions try to use good default aesthetics and add informative

labels so that their output is immediately useful. But defaults can only go so far,

and creating a fully-polished custom plot will require additional steps. Several

levels of additional customization are possible.

The first way is to use one of the alternate seaborn themes to give your plots a

different look. Setting a different theme or color palette will make it take effect

for all plots:

sns.set(style="ticks", palette="muted")

sns.relplot(x="total_bill", y="tip", col="time",

 hue="smoker", style="smoker", size="size",

 data=tips);

Fig 17 Smoker plot

For figure-specific customization, all seaborn functions accept a number of

optional parameters for switching to non-default semantic mappings, such as

different colors. (Appropriate use of color is critical for effective data

visualization, and seaborn has extensive support for customizing color palettes).

https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot
https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
https://seaborn.pydata.org/generated/seaborn.JointGrid.html#seaborn.JointGrid
https://seaborn.pydata.org/generated/seaborn.PairGrid.html#seaborn.PairGrid
https://seaborn.pydata.org/tutorial/color_palettes.html#palette-tutorial

79

Finally, where there is a direct correspondence with an underlying matplotlib

function (like scatterplot() and plt.scatter), additional keyword arguments will

be passed through to the matplotlib layer:

sns.relplot(x="total_bill", y="tip", col="time",

 hue="size", style="smoker", size="size",

 palette="YlGnBu", markers=["D", "o"], sizes=(10, 125),

edgecolor=".2", linewidth=.5, alpha=.75,

 data=tips);

Fig 18 Scatter plot

In the case of relplot() and other figure-level functions, that means there are a

few levels of indirection because relplot() passes its exta keyword arguments to

the underlying seaborn axes-level function, which passes its extra keyword

arguments to the underlying matplotlib function. So it might take some effort to

find the right documentation for the parameters you‟ll need to use, but in

principle an extremely high level of customization is possible.

Some customization of figure-level functions can be accomplished through

additional parameters that get passed to FacetGrid, and you can use the

methods on that object to control many other properties of the figure. For even

more tweaking, you can access the matplotlib objects that the plot is drawn

onto, which are stored as attributes:

g = sns.catplot(x="total_bill", y="day", hue="time",

 height=3.5, aspect=1.5,

 kind="box", legend=False, data=tips);

g.add_legend(title="Meal")

https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid

80

g.set_axis_labels("Total bill ($)", "")

g.set(xlim=(0, 60), yticklabels=["Thursday", "Friday", "Saturday", "Sunday"])

g.despine(trim=True)

g.fig.set_size_inches(6.5, 3.5)

g.ax.set_xticks([5, 15, 25, 35, 45, 55], minor=True);

plt.setp(g.ax.get_yticklabels(), rotation=30);

Because the figure-level functions are oriented towards efficient exploration,

using them to manage a figure that you need to be precisely sized and organized

may take more effort than setting up the figure directly in matplotlib and using

the corresponding axes-level seaborn function. Matplotlib has a comprehensive

and powerful API; just about any attribute of the figure can be changed to your

liking. The hope is that a combination of seaborn‟s high-level interface and

matplotlib‟s deep customizability will allow you to quickly explore your data

and create graphics that can be tailored into a publication quality final product.

Organizing datasets

As mentioned above, seaborn will be most powerful when your datasets have a

particular organization. This format ia alternately called “long-form” or “tidy”

data and is described in detail by Hadley Wickham in this academic paper. The

rules can be simply stated:

1. Each variable is a column

2. Each observation is a row

A helpful mindset for determining whether your data are tidy is to think

backwards from the plot you want to draw. From this perspective, a “variable”

is something that will be assigned a role in the plot. It may be useful to look at

the example datasets and see how they are structured. For example, the first five

rows of the “tips” dataset look like this:

tips.head()

https://github.com/wagnerlabpapers/Waskom_PNAS_2017
http://vita.had.co.nz/papers/tidy-data.html

81

 total_bill tip sex smoker day time size

0

16.99 1.01 Female No Sun Dinner 2

1

10.34 1.66 Male No Sun Dinner 3

2

21.01 3.50 Male No Sun Dinner 3

3

23.68 3.31 Male No Sun Dinner 2

4

24.59 3.61 Female No Sun Dinner 4

Table 1 Tips Dataset

In some domains, the tidy format might feel awkward at first. Timeseries data,

for example, are sometimes stored with every timepoint as part of the same

observational unit and appearing in the columns. The “fmri” dataset that we

used above illustrates how a tidy timeseries dataset has each timepoint in a

different row:

fmri.head()

https://seaborn.pydata.org/introduction.html#intro-stat-estimation

82

 subject timepoint event region signal

0
s13 18 stim parietal -0.017552

1
s5 14 stim parietal -0.080883

2
s12 18 stim parietal -0.081033

3
s11 18 stim parietal -0.046134

4
s10 18 stim parietal -0.037970

Table 2 FRMI Dataset

Many seaborn functions can plot wide-form data, but only with limited

functionality. To take advantage of the features that depend on tidy-formatted

data, you‟ll likely find the pandas.melt function useful for “un-pivoting” a

wide-form dataframe.

5.6 SCIKIT-LEARN

Defining scikit learn, it is a free software machine learning library for the

Python programming language. It features various classification, regression and

clustering algorithms including support vector machines, random forests,

gradient boosting, k-means and DBSCAN, and is designed to interoperate with

the Python numerical and scientific libraries NumPy and SciPy.

Scikit-learn was initially developed by David Cornopean as a Google summer

of code project in 2007.Later Matthieu Brucher joined the project and started to

use it as a part of his thesis work. In 2010 INRIA got involved and the first

public release (v0.1 beta) was published in late January 2010.The project now

has more than 30 active contributors and has had paid sponsorship from INRIA,

Google, Tiny clues and the Python Software Foundation.

In general, a learning problem considers a set of n samples of data and then tries

to predict properties of unknown data. If each sample is more than a single

number and, for instance, a multi-dimensional entry (aka multivariate data), it is

said to have several attributes or features.

83

Learning problems fall into a few categories:

 supervised learning, in which the data comes with additional attributes

that we want to predict (Click here to go to the scikit-learn supervised

learning page).This problem can be either:

o classification: samples belong to two or more classes and we want

to learn from already labeled data how to predict the class of

unlabeled data. An example of a classification problem would be

handwritten digit recognition, in which the aim is to assign each

input vector to one of a finite number of discrete categories.

Another way to think of classification is as a discrete (as opposed

to continuous) form of supervised learning where one has a limited

number of categories and for each of the n samples provided, one

is to try to label them with the correct category or class.

o regression: if the desired output consists of one or more continuous

variables, then the task is called regression. An example of a

regression problem would be the prediction of the length of a

salmon as a function of its age and weight.

 unsupervised learning, in which the training data consists of a set of input

vectors x without any corresponding target values. The goal in such

problems may be to discover groups of similar examples within the data,

where it is called clustering, or to determine the distribution of data

within the input space, known as density estimation, or to project the data

from a high-dimensional space down to two or three dimensions for the

purpose of visualization (Click here to go to the Scikit-Learn

unsupervised learning page).

Training set and testing set

Machine learning is about learning some properties of a data set and then testing

those properties against another data set. A common practice in machine

learning is to evaluate an algorithm by splitting a data set into two. We call one

of those sets the training set, on which we learn some properties; we call the

other set the testing set, on which we test the learned properties.

Loading an example dataset

scikit-learn comes with a few standard datasets, for instance the iris and digits

datasets for classification and the boston house prices dataset for regression.

In the following, we start a Python interpreter from our shell and then load the

iris and digits datasets. Our notational convention is that $ denotes the shell

prompt while >>> denotes the Python interpreter prompt:

$ python

>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> digits = datasets.load_digits()

84

A dataset is a dictionary-like object that holds all the data and some metadata

about the data. This data is stored in the .data member, which is a n_samples,

n_features array. In the case of supervised problem, one or more response

variables are stored in the .target member. More details on the different datasets

can be found in the dedicated section.

For instance, in the case of the digits dataset, digits.data gives access to the

features that can be used to classify the digits samples:

>>>

>>> print(digits.data)

[[0. 0. 5. ... 0. 0. 0.]

 [0. 0. 0. ... 10. 0. 0.]

 [0. 0. 0. ... 16. 9. 0.]

 ...

 [0. 0. 1. ... 6. 0. 0.]

 [0. 0. 2. ... 12. 0. 0.]

 [0. 0. 10. ... 12. 1. 0.]]

and digits.target gives the ground truth for the digit dataset, that is the number

corresponding to each digit image that we are trying to learn:

>>>

>>>digits.target

array([0, 1, 2, ..., 8, 9, 8])

Shape of the data arrays

The data is always a 2D array, shape (n_samples, n_features), although the

original data may have had a different shape. In the case of the digits, each

original sample is an image of shape (8, 8) and can be accessed using:

>>>

>>>digits.images[0]

array([[0., 0., 5., 13., 9., 1., 0., 0.],

[0., 0., 13., 15., 10., 15., 5., 0.],

[0., 3., 15., 2., 0., 11., 8., 0.],

[0., 4., 12., 0., 0., 8., 8., 0.],

[0., 5., 8., 0., 0., 9., 8., 0.],

[0., 4., 11., 0., 1., 12., 7., 0.],

[0., 2., 14., 5., 10., 12., 0., 0.],

[0., 0., 6., 13., 10., 0., 0., 0.]])

The simple example on this dataset illustrates how starting from the original

problem one can shape the data for consumption in scikit-learn.

Loading from external datasets

To load from an external dataset, please refer to loading external datasets.

Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which

digit it represents. We are given samples of each of the 10 possible classes (the

85

digits zero through nine) on which we fit an estimator to be able to predict the

classes to which unseen samples belong.

In scikit-learn, an estimator for classification is a Python object that implements

the methods fit(X, y) and predict(T).

An example of an estimator is the class sklearn.svm.SVC, which implements

support vector classification. The estimator‟s constructor takes as arguments the

model‟s parameters.

For now, we will consider the estimator as a black box:

>>>

>>> from sklearn import svm

>>>clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example, we set the value of gamma manually. To find good values for

these parameters, we can use tools such as grid search and cross validation.

The clf (for classifier) estimator instance is first fitted to the model; that is, it

must learn from the model. This is done by passing our training set to the fit

method. For the training set, we‟ll use all the images from our dataset, except

for the last image, which we‟ll reserve for our predicting. We select the training

set with the [:-1] Python syntax, which produces a new array that contains all

but the last item from digits.data:

>>>

>>>clf.fit(digits.data[:-1], digits.target[:-1])

SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

Now you can predict new values. In this case, you‟ll predict using the last image

from digits.data. By predicting, you‟ll determine the image from the training set

that best matches the last image.

>>>

>>>clf.predict(digits.data[-1:])

array([8])

The corresponding image is:

86

Fig 19 Training Set

Fig 20 Flask logo

Flask is a lightweight WSGI web application framework. It is designed to make

getting started quick and easy, with the ability to scale up to complex

applications. It began as a simple wrapper around Werkzeug and Jinja and has

become one of the most popular Python web application frameworks.

Flask offers suggestions, but doesn't enforce any dependencies or project layout.

It is up to the developer to choose the tools and libraries they want to use. There

are many extensions provided by the community that make adding new

functionality easy.

from flask import Flask, escape, request

app = Flask(__name__)

@app.route('/')

defhello():

 name =request.args.get("name", "World")

returnf'Hello, {escape(name)}!'

https://palletsprojects.com/p/werkzeug
https://palletsprojects.com/p/jinja

87

$ env FLASK_APP=hello.py flask run

 * Serving Flask app "hello"

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Flask is a micro web framework written in Python. It is classified as a

microframework because it does not require particular tools or libraries. It has

no database abstraction layer, form validation, or any other components where

pre-existing third-party libraries provide common functions. However, Flask

supports extensions that can add application features as if they were

implemented in Flask itself. Extensions exist for object-relational mappers,

form validation, upload handling, various open authentication technologies and

several common framework related tools.

Applications that use the Flask framework include Pinterest and LinkedIn.

88

CHAPTER 6

IMPLEMENTATION & RESULTS

Modules are files that contain Python definitions and declarations. Modules can

define functions, classes, and variables. Modules can also include executable

code. Grouping related code in the module can make it easier to understand and

use the code. It also makes the code logical. In Python programming, treat

modules as the same as code libraries.

The Designed system needs to be implemented. We are using Python

Programming for the implementation. A chatbot is a computer program that

allows people to interact with technology using various input methods (such as

voice, text, gestures, and touch, 24 hours a day, 7 days a week, 365 days a

year).

89

CHAPTER 7

CONCLUSION

CONCLUSION:

The Project is being implemented. The Proposed Book Recommender System

will use Content based filtering technique using cosine similarity algorithm.

This methodology depends on making a plenty of parameters to describe a

particular product.. Thinking about an Book as an model the potential

parameters could be Author, Publisher, Year Published etc.. The bigger the

parameter set the better and simpler it is to coordinate examples with

customer‟s profile and his online impression.

90

CHAPTER 8

REFERENCES

 https://iopscience.iop.org/article/10.1088/1742-6596/1362/1/012130/pdf

 https://webpages.charlotte.edu/nmatta1/cloudproject/Project_Report.pdf

 https://thesai.org/Downloads/Volume12No1/Paper_26Personalized_Book_Recommen

dation_System.pdf

 http://www.jotr.in/text.asp?20131/6/1/1/118718

 http://dlib.net/landmark_recommendationex.cpp.html

 http://ethesis.nitrkl.ac.in/80857/1/2016_BT_CSahoo_112EI0563_Driver.pdf

 https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11640486S419.pdf

https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/

91

Copyright protected @ ENGPAPER.COM and AUTHORS

Engpaper Journal

https://www.engpaper.com

https://www.engpaper.com/
https://www.engpaper.com/
https://www.engpaper.com/

