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ABSTRACT 

 
               Presently a-days, many significant internet business and websites are 

utilizing suggestion frameworks to give important proposals to their clients and 

customers. The suggestions could be founded on different parameters, for 

example, things mainstream on the company‟s Website; client/ customer 

qualities, for example, land area or other statistic data; or past purchasing 

conduct of top clients/ customers. In this project, a book suggestion motor is 

proposed which utilizes content-based filtering technique for recommending the 

books to the customer. The content based filtering technique doesn‟t requires a 

big amount of data to get trained and can work on significantly less amount of 

data even from a single customer. The Algorithm used here is KNN with Cosine 

similarity. 
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CHAPTER 1 

 

INTRODUCTION 

 
            A Recommendation System, in genuine definition can be described to as 

a framework that can run on grouped/non grouped environment by taking 

client/customer‟s online impression as one of its input and producing a likely 

result for the client along these lines giving its clients an expectation closer to 

the real world. Recommender system generally require a huge dataset and a 

quick registering framework that can perform examination on the equivalent 

within seconds. 

 

Recommendation Systems, in easier terms are programs that are information 

escalated and include complex example coordinating on a lot of predefined 

parameters and they become proficient with the expansion in the size of the 

substance being sustained to them. Recommender frameworks represents client 

inclinations with the end goal of proposing things to buy or look at. They have 

become basic applications in electronic business also, giving proposals that 

viably prune huge data spaces with the goal that clients are coordinated toward 

those things that best address their issues and interests. An assortment of 

systems have been proposed till today for performing proposals. The systems 

for example, content-based, communitarian, information based and statistic are 

utilized for proposals.  

 

In the proposed book Recommendation System, books will be shown by using 

content based filtering technique, which can work even in a smaller amount of 

data. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1 INTRODUCTION 
 

Online Book Recommendation System using Collaborative Filtering  

 

https://iopscience.iop.org/article/10.1088/1742-6596/1362/1/012130/pdf 

 

Recommendation System (RS) is software that suggests similar items to a 

purchaser based on his/her earlier purchases or preferences. RS examines huge 

data of objects and compiles a list of those objects which would fulfil the 

requirements of the buyer. Nowadays most ecommerce companies are using 

Recommendation systems to lure buyers to purchase more by offering items 

that the buyer is likely to prefer. Book Recommendation System is being used 

by Amazon, Barnes and Noble, Flipkart, Goodreads, etc. to recommend books 

the customer would be tempted to buy as they are matched with his/her choices. 

The challenges they face are to filter, set a priority and give recommendations 

which are accurate. RS systems use Collaborative Filtering (CF) to generate 

lists of items similar to the buyer‟s preferences. Collaborative filtering is based 

on the assumption that if a user has rated two books then to a user who has read 

one of these books, the other book can be recommended (Collaboration). CF 

has difficulties in giving accurate recommendations due to problems of 

scalability, sparsity and cold start. Therefore this paper proposes a 

recommendation that uses Collaborative filtering with Jaccard Similarity (JS) to 

give more accurate recommendations. JS is based on an index calculated for a 

pair of books. It is a ratio of common users (users who have rated both books) 

divided by the sum of users who have rated the two books individually. Larger 

the number of common users higher will be the JS Index and hence better 

recommendations. Books with high JS index (more recommended) will appear 

on top of the recommended books list.  

 
 
Book Recommender System 

https://webpages.charlotte.edu/nmatta1/cloudproject/Project_Report.pdf 

 

Both the online entertainment and e-commerce companies are trying to retain 

their customers by taking their access to the website to more personalized 

manner. So, provide additional recommendations based on users past activity. 

Our project would be one of such system that recommends additional books that 

belongs to similar genre, author or publisher. Such systems result in increase in 
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rate of purchase, these may also include unplanned purchases driven by surprise 

factor from the recommendations made. 

Personalized Book Recommendation System using Machine Learning 

Algorithm 

 
https://thesai.org/Downloads/Volume12No1/Paper_26-

Personalized_Book_Recommendation_System.pdf 

 

As the amounts of online books are exponentially increasing due to COVID-19 

pandemic, finding relevant books from a vast e-book space becomes a 

tremendous challenge for online users. Personal recommendation systems have 

been emerged to conduct effective search which mine related books based on 

user rating and interest. Most of these existing systems are user-based ratings 

where content-based and collaborativebased learning methods are used. These 

systems' irrationality is their rating technique, which counts the users who have 

already been unsubscribed from the services and no longer rate books. This 

paper proposed an effective system for recommending books for online users 

that rated a book using the clustering method and then found a similarity of that 

book to suggest a new book. The proposed system used the K-means Cosine 

Distance function to measure distance and Cosine Similarity function to find 

Similarity between the book clusters. Sensitivity, Specificity, and F Score were 

calculated for ten different datasets. The average Specificity was higher than 

sensitivity, which means that the classifier could re-move boring books from the 

reader's list. Besides, a receiver operating characteristic curve was plotted to 

find a graphical view of the classifiers' accuracy. Most of the datasets were 

close to the ideal diagonal classifier line and far from the worst classifier line. 

The result concludes that recommendations, based on a particular book, are 

more accurately effective than a user-based recommendation system. 

 
 

2.2 EXISTING SYSTEM 
 
Following are some of the existing book recommendation engines used by the 

top rated book purchasing websites.  

 

The existing engines make use of conventional algorithms for 

recommendations. In Content based Recommendation Engine, system generates 

recommendations from source based on the features associated with products 

and the user‟s information.  

 

Content-based recommenders treat recommendation as a user-specific 

classification problem and learn a classifier for the user's likes and dislikes 
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based on product features. In Collaborative recommendation engines, 

suggestions are generated on the basis of ratings given by group of people. It 

locates peer users with a rating history similar to the current user and generates 

recommendations for the user.  

 

In Context based Recommendation Engine, system requires the additional data 

about the context of item consumption like  time, mood and behavioural 

aspects. These data may be used to improve the recommendation compared to 

what could be performed without this additional source of information. 

 

2.3 DISADVANTAGES OF EXISTING SYSTEM 

 
The major problem with existing system is it needs a good amount of data to 

even work considerably good which can be a challenge for small businesses and 

startups. 

 

The data which is to be used for training should be precise and filtered. Any 

mistake in the data can lead to inaccuracy of the whole system. 

 

2.4 PROPOSED SYSTEM 

 
The Proposed Book Recommender System will use Content based filtering 

technique using cosine similarity algorithm. This methodology depends on 

making a plenty of parameters to describe a particular product.. Thinking about 

an Book as an  model the potential parameters could be Author, Publisher, Year 

Published etc.. The bigger the parameter set the better and simpler it is to 

coordinate examples with customer‟s profile and his online impression. The 

parameters would then be able to be assigned weight and consequently a 

relative need is set for every one of the parameter. All these parameters are then 

used to make a customer‟s profile. Henceforth we see that the system finds out 

about the client inclinations and choice patters by his online impression. 

 

A website System can be made where the user can select the books which 

he/she likes or the book which user is currently reading. In real-time, the system 

will be recommending them other books. Such system in future scope can also 

be integrated with ecommerce website to increase sales. 

 

2.5 ADVANTAGES OF PROPOSED SYSTEM 
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The major advantage of using Content based filtering algorithm is no 

requirement of huge dataset.The Content Based filtering algorithm is flexible in 

nature. 

 

CHAPTER 3 

 

ANALYSIS 
3.1 Software Design Method 

 

Software design is the process of conceptualizing the software requirements of a 

software implementation. Software design takes  user requirements as an issue 

and seeks to find the best solution. Once the software is  conceptualized, a plan 

is created to find the best  design to implement the desired solution.  

 

 There are several variations in software design. Let's take a quick look at them:  

 

3.1.1 Structured Design 

 

Structured design conceptualizes the problem into several well-organized 

solution elements. It is something about the essentially solutions of design. The 

advantage of structured design is that you can better understand what is 

resolved how the problem. The structured design, the designer makes it easy to 

further concentrate on the problem.  

 

Structured design is  based mainly on the "divide and conquer" strategy. In this 

strategy, is divided into a plurality of small problem is a problem, until the 

whole issue is resolved, small problems will be resolved one by one.  

 

Small problems are resolved by the components of the solution. The structured 

design emphasizes that these modules are properly organized  to achieve an 

accurate solution.  

 

These modules are arranged hierarchically. They communicate with each other. 

A well-structured design always adheres to some rules for communication 

between multiple modules:  

Cohesion - grouping of all functionally related elements.  

Coupling communications between different modules.  

 

 A well-structured design with high cohesion and low coupling.  
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3.1.2 Function-oriented design  

 

In a function-oriented design, a system consists of many small subsystems 

called functions. These features allow you to perform important tasks on your 

system. The system is displayed as a top view of all features.  

Function-oriented design inherits some characteristics of structured design 

using divide-and-conquer method.  

 

This design mechanism  provides a means of abstraction by dividing the entire 

system into smaller functions and hiding information and its operations. These 

functional modules can exchange information with each other by passing 

information or using globally available information.  

 

Another characteristic of a function is that when a program calls a function, that 

function changes the state of the program. This may not be acceptable in other 

modules. Function-oriented design works well when the state of the system is 

not important and the program / function works on the input rather than the 

state.  

 

Design process  

 

 The entire system is displayed as a data flow in the system using a data 

flow diagram.  

 DFD shows how a function changes the data and state of the entire 

system. 

 The entire system is logically divided into smaller units called functions 

based on how it behaves within the system.  

 The functions are then implemented.  

 

3.1.3 Object-oriented design  

 

Object-oriented design avoids entities and their properties rather than the 

features contained in the software system. This design strategy focuses on the 

entity and its properties. The overall concept of a software solution revolves 

around the units involved.  

 

Let's review the important concepts of object-oriented design.  
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 Objects - All entities involved in  solution design are called objects. For 

example, people, banks, businesses, and customers are treated as objects. 

Each entity has several attributes associated with it, and there are several 

methods to execute on those attributes.  

 Class - A class is a generalized description of an object. The object is an 

instance of the class. The class defines all the attributes that an object can 

have and the methods that define the functionality of the object.  

 

 In  solution design, attributes are stored as variables and functions are 

defined by  methods or procedures.  

 

 Encapsulation - OOD bundles attributes (data variables) and methods 

(operations on data), which is called encapsulation. Encapsulation not 

only bundles important information about an object, but also limits access 

to data and methods from the outside. This is known as hiding 

information.  

 

 Inheritance - OOD allows you to stack similar classes hierarchically. 

Subclasses or subclasses can import, implement, and reuse valid variables 

and methods from direct superclasses. This property of OOD is called 

inheritance. This makes it easy to define a particular class and  create a 

generalized class from a particular class.  

 

 Polymorphism - The polymorphism OOD language provides a 

mechanism that allows methods that perform similar tasks but have 

different arguments to have the same name. This is called polymorphism 

and allows you to perform different types of tasks with a single interface. 

The appropriate part of the code is executed, depending on how the 

function is called. 

 

Design process  

 

The software design process can be recognized as a series of well-defined steps. 

Depending on your design approach (functional or object-oriented), it may 

include the following steps:  

 

 Solution designs are created from requirements or previously used 

systems and / or system flow charts.  

 Objects are identified and grouped into classes by the name of  attribute 

characteristic similarity. 

 The class hierarchy and the relationships between them are defined.  
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 The application framework is defined.  

 

 

 

 

 

3.1.4 Software design approach  

 

Two common approaches to software design are:  

 

 Top-down design  

 

It is known that the system consists of multiple subsystems and  contains many 

components. In addition, these subsystems and components  have their own set 

of subsystems and components, allowing you to create a hierarchical structure 

in your system.  

 

The top-down design takes the entire software system as a unit and 

disassembles it to get multiple subsystems or components based on some 

characteristics. Each subsystem or component is then treated as a system and 

further subdivided. This process continues until you reach the lowest system 

level  in the top-down hierarchy. 

 

The top-down design starts with a generalized system model  and defines its 

more specific parts. Putting all the components together creates the entire 

system. 

 

The top-down design is  suitable when you need to design a software solution  

from scratch and you do not know the specific details.  

 

 

 Bottom-up Design  

 

The bottom-up design model starts with the most specific and basic 

components. Continue assembling high-level components with  basic or low-

level components. Continue to create higher level components until the desired 

system is developed as a single component. The higher the level, the greater the 

set of abstractions.  

 

The bottom-up strategy is  suitable when you need to build a system  from an 

existing system that can use basic primitives. 
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Both top-down and bottom-up approaches are not individually practical. 

Instead, the appropriate combination of both is used. 

 
 
 
 
 

3.2 ARCHITECTURE DIAGRAM: 
 Research Phase Explanation 
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Fig1 Architecture diagram 

Data Acquisition: 
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Data Acquisition means loading/importing the necessary Data into 

python workspace. Converting the normal tabular data like csv files etc. into 

python understandable data such as “nd-array” object of “numpy” object. 

 

Data Analysis: 

 

Data Analysis means understanding the basics of the data being loaded. 

To have knowledge of number of row and columns, type of data each column 

has, their statistics and Graphical Structures. So that we can perform Data pre-

processing step easily. 

 

Data pre-processing 

 

Data pre-processing means cleaning and preparing the data for giving it as 

input to the algorithm etc.   

1. Cleaning: removing or handling the empty values in the dataset. 

2. Data Manipulation: working with encoders transposing the row into 

columns vice versa and other pre-processing steps. 

 

Creating: instantiating the multiple algorithms which can accept input and 

produce output and supplying them with the train data to start the training.   

 

Inference: providing the input to Algorithm to process the output 

recommendation as it is a un-supervised algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GUI PHASE  
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Fig 2 GUI Phase 

 
 DFD 
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Fig 3 DFD Flowchart 
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ALGORITHM(S) USED IN THE WORK 

 

 
4.1 K Nearest Neigbhors 

 

K-NN is a non-parametric and lazy learning algorithm. Non-

parametric means there is no assumption for underlying data distribution i.e. the 

model structure determined from the dataset. 

It is called Lazy algorithm because it does not need any training data 

points for model generation. All training data is used in the testing phase which 

makes training faster and testing phase slower and costlier. 

K-Nearest Neighbor (K-NN) is a simple algorithm that stores all the 

available cases and classifies the new data or case based on a similarity 

measure. 

K-NN classification 

In K-NN classification, the output is a class membership. An object is 

classified by a plurality vote of its neighbors, with the object being assigned to 

the class most common among its k nearest neighbors (k is a positive integer, 

typically small). If k = 1, then the object is simply assigned to the class of that 

single nearest neighbor. 

To determine which of the K instances in the training dataset are most 

similar to a new input, a distance measure is used. For real-valued input 

variables, the most popular distance measure is the Euclidean distance. 

 

 
Fig 4 KNN Classification 

Source: Towards Data Science 

 

 

 

4.2 The Euclidean distance 
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The Euclidean distance is the most common distance metric used in low 

dimensional data sets. It is also known as the L2 norm. The Euclidean 

distance is the usual manner in which distance is measured in the real world. 

Where p and q are n-dimensional vectors and denoted by p = 

(p1, p2,…, pn) and q = (q1, q2,…, qn) represent the n attribute values of two 

records. 

While Euclidean distance is useful in low dimensions, it doesn’t work 

well in high dimensions and for categorical variables. The drawback of 

Euclidean distance is that it ignores the similarity between attributes. Each 

attribute is treated as totally different from all of the attributes. 

 

Other popular distance measures : 

 Hamming Distance: Calculate the distance between binary vectors. 

 Manhattan Distance: Calculate the distance between real vectors using 

the sum of their absolute difference. Also called City Block Distance. 

 Minkowski Distance: Generalization of Euclidean and Manhattan 

distance. 

 

Steps to be carried out during the K-NN algorithm are as follows: 

1. Divide the data into training and test data. 

2. Select a value K. 

3. Determine which distance function is to be used. 

4. Choose a sample from the test data that needs to be classified and 

compute the distance to its n training samples. 

5. Sort the distances obtained and take the k-nearest data samples. 

6. Assign the test class to the class based on the majority vote of its k 

neighbors. 

 

 
Fig 5 Euclidean Distance 

Source: DataCamp 
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Performance of the K-NN algorithm is influenced by three main factors : 

 

1. The distance function or distance metric used to determine the nearest 

neighbors. 

2. The decision rule used to derive a classification from the K-nearest 

neighbors. 

3. The number of neighbors used to classify the new example. 

 

 

Advantages of K-NN: 

 

1. The K-NN algorithm is very easy to implement. 

2. Nearly optimal in the large sample limit. 

3. Uses local information, which can yield highly adaptive behaviour. 

4. Lends itself very easily to parallel implementation. 
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TOOLS USED FOR IMPLEMENTATION 
 

5.1 PYTHON 

 

Python is an interpreted, high-level, general-purpose programming language. 

Created by Guido van Rossum and first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant 

whitespace. It provides constructs that enable clear programming on both small 

and large scales. Van Rossum led the language community until stepping down 

as leader in July 2018.Python features a dynamic type system and automatic 

memory management. It supports multiple programming paradigms, including 

object-oriented, imperative, functional and procedural. It also has a 

comprehensive standard library. The Python interpreter and the extensive 

standard library are freely available in source or binary form for all major 

platforms from the Python Web site, https:// www. python .org/, and may be 

freely distributed. The same site also contains distributions of and pointers to 

many free third party Python modules, programs and tools, and additional 

documentation.  

 

 

Python is simple to use, but it is a real programming language, offering much 

more structure and support for large programs than shell scripts or batch files 

can offer. On the other hand, Python also offers much more error checking than 

C, and, being a very-high-level language, it has high-level data types built in, 

such as flexible arrays and dictionaries. Because of its more general data types 

Python is applicable to a much larger problem domain than Awk or even Perl, 

yet many things are at least as easy in Python as in those languages. 

Python allows you to split your program into modules that can be reused in 

other Python programs. It comes with a large collection of standard modules 

that you can use as the basis of your programs — or as examples to start 

learning to program in Python. Some of these modules provide things like file 

I/O, system calls, sockets, and even interfaces to graphical user interface 

toolkits like Tk. 
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Python is an interpreted language, which can save you considerable time during 

program development because no compilation and linking is necessary. The 

interpreter can be used interactively, which makes it easy to experiment with 

features of the language, to write throw-away programs, or to test functions 

during bottom-up program development. It is also a handy desk calculator. 

Python enables programs to be written compactly and readably. Programs 

written in Python are typically much shorter than equivalent C, C++, or Java 

programs, for several reasons: 

 the high-level data types allow you to express complex operations in a 

single statement; 

 statement grouping is done by indentation instead of beginning and 

ending brackets; 

 no variable or argument declarations are necessary. 

Python is extensible: if you know how to program in C it is easy to add a new 

built-in function or module to the interpreter, either to perform critical 

operations at maximum speed, or to link Python programs to libraries that may 

only be available in binary form (such as a vendor-specific graphics library). 

Once you are really hooked, you can link the Python interpreter into an 

application written in C and use it as an extension or command language for 

that application. 

Invoking the Interpreter 

The Python interpreter is usually installed as /usr/local/bin/python3.7 on those 

machines where it is available; putting /usr/local/bin in your Unix shell‟s search 

path makes it possible to start it by typing the command: 

python3.7 

to the shell. [1] Since the choice of the directory where the interpreter lives is an 

installation option, other places are possible; check with your local Python guru 

or system administrator. (E.g., /usr/local/python is a popular alternative 

location.) 

On Windows machines, the Python installation is usually placed 

in C:\Python37, though you can change this when you‟re running the installer. 

To add this directory to your path, you can type the following command into the 

command prompt in a DOS box: 

set path=%path%;C:\python37 

https://docs.python.org/3.7/tutorial/interpreter.html#id2
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Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at 

the primary prompt causes the interpreter to exit with a zero exit status. If that 

doesn‟t work, you can exit the interpreter by typing the following 

command: quit(). 

The interpreter‟s line-editing features include interactive editing, history 

substitution and code completion on systems that support readline. Perhaps the 

quickest check to see whether command line editing is supported is 

typing Control-P to the first Python prompt you get. If it beeps, you have 

command line editing; see Appendix Interactive Input Editing and History 

Substitution for an introduction to the keys. If nothing appears to happen, or 

if ^P is echoed, command line editing isn‟t available; you‟ll only be able to use 

backspace to remove characters from the current line. 

The interpreter operates somewhat like the Unix shell: when called with 

standard input connected to a tty device, it reads and executes commands 

interactively; when called with a file name argument or with a file as standard 

input, it reads and executes a script from that file. 

A second way of starting the interpreter is python -c command [arg] ..., which 

executes the statement(s) in command, analogous to the shell‟s -c option. Since 

Python statements often contain spaces or other characters that are special to the 

shell, it is usually advised to quote command in its entirety with single quotes. 

Some Python modules are also useful as scripts. These can be invoked 

using python -m module [arg] ..., which executes the source file for module as if 

you had spelled out its full name on the command line. 

When a script file is used, it is sometimes useful to be able to run the script and 

enter interactive mode afterwards. This can be done by passing -i before the 

script. 

Argument Passing 

When known to the interpreter, the script name and additional arguments 

thereafter are turned into a list of strings and assigned to the argv variable in 

the sys module. You can access this list by executing import sys. The length of 

the list is at least one; when no script and no arguments are given, sys.argv[0] is 

an empty string. When the script name is given as '-' (meaning standard 

input), sys.argv[0] is set to '-'. When -ccommand is used, sys.argv[0] is set to '-

c'. When -m module is used, sys.argv[0] is set to the full name of the located 

module. Options found after -c command or -m module are not consumed by 

the Python interpreter‟s option processing but left in sys.argv for the command 

or module to handle. 

https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-i
https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-m
https://docs.python.org/3.7/using/cmdline.html#cmdoption-c
https://docs.python.org/3.7/using/cmdline.html#cmdoption-m
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Interactive Mode 

When commands are read from a tty, the interpreter is said to be in interactive 

mode. In this mode it prompts for the next command with the primary prompt, 

usually three greater-than signs (>>>); for continuation lines it prompts with 

the secondary prompt, by default three dots (...). The interpreter prints a 

welcome message stating its version number and a copyright notice before 

printing the first prompt: 

$ python3.7 

Python 3.7 (default, Sep 16 2015, 09:25:04) 

[GCC 4.8.2] on linux 

Type "help", "copyright", "credits" or "license" for more information. 

>>> 

Continuation lines are needed when entering a multi-line construct. As an 

example, take a look at this if statement: 

>>> 

>>>the_world_is_flat = True 

>>> ifthe_world_is_flat: 

... print("Be careful not to fall off!") 

... 

Be careful not to fall off! 

In the following examples, input and output are distinguished by the presence or 

absence of prompts (>>> and …): to repeat the example, you must type 

everything after the prompt, when the prompt appears; lines that do not begin 

with a prompt are output from the interpreter. Note that a secondary prompt on 

a line by itself in an example means you must type a blank line; this is used to 

end a multi-line command. 

Many of the examples in this manual, even those entered at the interactive 

prompt, include comments. Comments in Python start with the hash 

character, #, and extend to the end of the physical line. A comment may appear 

at the start of a line or following whitespace or code, but not within a string 

literal. A hash character within a string literal is just a hash character. Since 

comments are to clarify code and are not interpreted by Python, they may be 

omitted when typing in examples. 

Some examples: 

https://docs.python.org/3.7/reference/compound_stmts.html#if
https://docs.python.org/3.7/glossary.html#term
https://docs.python.org/3.7/glossary.html#term-1
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# this is the first comment 

spam = 1  # and this is the second comment 

# ... and now a third! 

text = "# This is not a comment because it's inside quotes." 

 

Python uses duck typing and has typed objects but untyped variable names. 

Type constraints are not checked at compile time; rather, operations on an 

object may fail, signifying that the given object is not of a suitable type. Despite 

being dynamically typed, Python is strongly typed, forbidding operations that 

are not well-defined (for example, adding a number to a string) rather than 

silently attempting to make sense of them. 

Python allows programmers to define their own types using classes, which are 

most often used for object-oriented programming. New instances of classes are 

constructed by calling the class (for example, SpamClass()  or EggsClass() ), 

and the classes are instances of the metaclass type  (itself an instance of itself), 

allowing metaprogramming and reflection. 

Before version 3.0, Python had two kinds of classes: old-style and new-

style. The syntax of both styles is the same, the difference being whether the 

class object  is inherited from, directly or indirectly (all new-style classes inherit 

from object  and are instances of type ). In versions of Python 2 from Python 

2.2 onwards, both kinds of classes can be used. Old-style classes were 

eliminated in Python 3.0. 

The long term plan is to support gradual typing
[77]

 and from Python 3.5, the 

syntax of the language allows specifying static types but they are not checked in 

the default implementation, CPython. An experimental optional static type 

checker named mypy supports compile-time type checking. 

 

Python has the usual C language arithmetic operators ( + , - , * , / , %). It also 

has **  for exponentiation, e.g. 5**3 == 125  and 9**0.5 == 3.0 , and a new 

matrix multiply @ operator is included in version 3.5.
[80]

 Additionally, it has a 

unary operator ( ~ ), which essentially inverts all the bits of its one argument. 

For integers, this means ~x=-x-1 .
[81]

 Other operators include bitwise shift 

operators x << y , which shifts x  to the left y  places, the same as x*(2**y) , 

and x >> y , which shifts x  to the right y  places, the same as x//(2**y) .
[82]

 

The behavior of division has changed significantly over time:
[83][why?]

 

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Type_system#Dynamic_type_checking_and_runtime_type_information
https://en.wikipedia.org/wiki/Strongly_typed_programming_language
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Metaclass
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-80
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-81
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-82
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-pep0238-83
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
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 Python 2.1 and earlier use the C division behavior. The /  operator is integer 

division if both operands are integers, and floating-point division otherwise. 

Integer division rounds towards 0, e.g. 7/3 == 2  and -7/3 == -2 . 

 Python 2.2 changes integer division to round towards negative infinity, 

e.g. 7/3 == 2  and -7/3 == -3 . The floor division //  operator is introduced. 

So 7//3 == 2 , -7//3 == -3 , 7.5//3 == 2.0  and -7.5//3 == -3.0 . Adding from 

__future__ import division  causes a module to use Python 3.0 rules for 

division (see next). 

 Python 3.0 changes /  to be always floating-point division. In Python terms, 

the pre-3.0 /  is classic division, the version-3.0 /  is real division, 

and //  is floor division. 

Rounding towards negative infinity, though different from most languages, adds 

consistency. For instance, it means that the equation (a + b)//b == a//b + 1  is 

always true. It also means that the equation b*(a//b) + a%b == a  is valid for 

both positive and negative values of a . However, maintaining the validity of 

this equation means that while the result of a%b  is, as expected, in the half-

open interval [0, b), where b  is a positive integer, it has to lie in the interval (b, 

0] when b  is negative.  

Python provides a round  function for rounding a float to the nearest integer. 

For tie-breaking, versions before 3 use round-away-from-zero: round(0.5)  is 

1.0, round(-0.5)  is −1.0. Python 3 uses round to even: round(1.5)  is 

2, round(2.5)  is 2.  

Python allows boolean expressions with multiple equality relations in a manner 

that is consistent with general use in mathematics. For example, the 

expression a < b < c  tests whether a  is less than b  and b  is less than c . C-

derived languages interpret this expression differently: in C, the expression 

would first evaluate a < b , resulting in 0 or 1, and that result would then be 

compared with c .  

Python has extensive built-in support for arbitrary precision arithmetic. Integers 

are transparently switched from the machine-supported maximum fixed-

precision (usually 32 or 64 bits), belonging to the python type int , to arbitrary 

precision, belonging to the Python type long , where needed. The latter have an 

"L" suffix in their textual representation. (In Python 3, the distinction between 

the int  and long  types was eliminated; this behavior is now entirely contained 

by the int  class.) The Decimal  type/class in module decimal  (since version 

2.4) provides decimal floating point numbers to arbitrary precision and several 

https://en.wikipedia.org/wiki/Half-open_interval
https://en.wikipedia.org/wiki/Half-open_interval
https://en.wikipedia.org/wiki/Rounding
https://en.wikipedia.org/wiki/Rounding#Tie-breaking
https://en.wikipedia.org/wiki/Round_to_even
https://en.wikipedia.org/wiki/Arbitrary_precision_arithmetic
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rounding modes. The Fraction  type in module fractions  (since version 2.6) 

provides arbitrary precision for rational 

numbers.https://en.wikipedia.org/wiki/Python_(programming_language) - 

cite_note-91 

Due to Python's extensive mathematics library, and the third-party 

library NumPy that further extends the native capabilities, it is frequently used 

as a scientific scripting language to aid in problems such as numerical data 

processing and manipulation.  

 

5.1.1 PYTHON MODULES USED in the RESEARCH 

 

NUMPY 

NumPy is a library for the Python programming language, adding support 

for large, multi-dimensional arrays and matrices, along with a large collection 

of high-level mathematical functions to operate on these arrays. The ancestor of 

NumPy, Numeric, was originally created by Jim Hugunin with contributions 

from several other developers. In 2005, Travis Oliphant created NumPy by 

incorporating features of the competing Numarray into Numeric, with extensive 

modifications. NumPy is open-source software and has many contributors. 

The Python programming language was not initially designed for 

numerical computing, but attracted the attention of the scientific and 

engineering community early on, so that a special interest group called matrix-

sig was founded in 1995 with the aim of defining an array computing package. 

Among its members was Python designer and maintainer Guido van Rossum, 

who implemented extensions to Python's syntax (in particular the indexing 

syntax) to make array computing easier. 

An implementation of a matrix package was completed by Jim Fulton, 

then generalized by Jim Hugunin to become Numeric,[4] also variously called 

Numerical Python extensions or NumPy. Hugunin, a graduate student at 

Massachusetts Institute of Technology (MIT), joined the Corporation for 

National Research Initiatives (CNRI) to work on JPython in 1997 leaving Paul 

Dubois of Lawrence Livermore National Laboratory (LLNL) to take over as 

maintainer. Other early contributors include David Ascher, Konrad Hinsen and 

Travis Oliphant. 

A new package called Numarray was written as a more flexible 

replacement for Numeric. Like Numeric, it is now deprecated. Numarray had 

faster operations for large arrays, but was slower than Numeric on small ones, 

so for a time both packages were used for different use cases. The last version 

of Numeric v24.2 was released on 11 November 2005 and numarray v1.5.2 was 

released on 24 August 2006. 

There was a desire to get Numeric into the Python standard library, but 

Guido van Rossum decided that the code was not maintainable in its state then. 

https://en.wikipedia.org/wiki/NumPy
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In early 2005, NumPy developer Travis Oliphant wanted to unify the 

community around a single array package and ported Numarray's features to 

Numeric, releasing the result as NumPy 1.0 in 2006.[7] This new project was 

part of SciPy. To avoid installing the large SciPy package just to get an array 

object, this new package was separated and called NumPy. Support for Python 

3 was added in 2011 with NumPy version 1.5.0.[13] 

In 2011, PyPy started development on an implementation of the NumPy 

API for PyPy. It is not yet fully compatible with NumPy. 

NumPy targets the CPython reference implementation of Python, which is a 

non-optimizing bytecode interpreter. Mathematical algorithms written for this 

version of Python often run much slower than compiled equivalents. NumPy 

addresses the slowness problem partly by providing multidimensional arrays 

and functions and operators that operate efficiently on arrays, requiring 

rewriting some code, mostly inner loops using NumPy. 

Using NumPy in Python gives functionality comparable to MATLAB 

since they are both interpreted,[16] and they both allow the user to write fast 

programs as long as most operations work on arrays or matrices instead of 

scalars. In comparison, MATLAB boasts a large number of additional 

toolboxes, notably Simulink, whereas NumPy is intrinsically integrated with 

Python, a more modern and complete programming language. Moreover, 

complementary Python packages are available; SciPy is a library that adds more 

MATLAB-like functionality and Matplotlib is a plotting package that provides 

MATLAB-like plotting functionality. Internally, both MATLAB and NumPy 

rely on BLAS and LAPACK for efficient linear algebra computations. 

Python bindings of the widely used computer vision library OpenCV 

utilize NumPy arrays to store and operate on data. Since images with multiple 

channels are simply represented as three-dimensional arrays, indexing, slicing 

or masking with other arrays are very efficient ways to access specific pixels of 

an image. The NumPy array as universal data structure in OpenCV for images, 

extracted feature points, filter kernels and many more vastly simplifies the 

programming workflow and debugging. 

Traits 

NumPy targets the CPython reference implementation of Python, which 

is a non-optimizing bytecode interpreter. Mathematical algorithms written for 

this version of Python often run much slower than compiled equivalents. 

NumPy addresses the slowness problem partly by providing multidimensional 

arrays and functions and operators that operate efficiently on arrays, requiring 

rewriting some code, mostly inner loops using NumPy. 

Using NumPy in Python gives functionality comparable 

to MATLAB since they are both interpreted,
[16]

 and they both allow the user to 

write fast programs as long as most operations work on arrays or matrices 

instead of scalars. In comparison, MATLAB boasts a large number of 

additional toolboxes, notably Simulink, whereas NumPy is intrinsically 

https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/NumPy#cite_note-16
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Simulink
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integrated with Python, a more modern and complete programming language. 

Moreover, complementary Python packages are available; SciPy is a library that 

adds more MATLAB-like functionality and Matplotlib is a plotting package 

that provides MATLAB-like plotting functionality. Internally, both MATLAB 

and NumPy rely on BLAS and LAPACK for efficient linear algebra 

computations. 

Python bindings of the widely used computer vision library OpenCV 

utilize NumPy arrays to store and operate on data. Since images with multiple 

channels are simply represented as three-dimensional arrays, indexing, slicing 

or masking with other arrays are very efficient ways to access specific pixels of 

an image. The NumPy array as universal data structure in OpenCV for images, 

extracted feature points, filter kernels and many more vastly simplifies the 

programming workflow and debugging. 

 

The ndarray data structure 

The core functionality of NumPy is its "ndarray", for n-dimensional 

array, data structure. These arrays are strided views on memory.
[7]

 In contrast to 

Python's built-in list data structure (which, despite the name, is a dynamic 

array), these arrays are homogeneously typed: all elements of a single array 

must be of the same type. 

Such arrays can also be views into memory buffers allocated 

by C/C++, Cython, and Fortran extensions to the CPython interpreter without 

the need to copy data around, giving a degree of compatibility with existing 

numerical libraries. This functionality is exploited by the SciPy package, which 

wraps a number of such libraries (notably BLAS and LAPACK). NumPy has 

built-in support for memory-mapped ndarrays.
[7]

 

 

Limitations 

Inserting or appending entries to an array is not as trivially possible as it 

is with Python's lists. The np.pad(...) routine to extend arrays actually creates 

new arrays of the desired shape and padding values, copies the given array into 

the new one and returns it. NumPy's np.concatenate([a1,a2]) operation does not 

actually link the two arrays but returns a new one, filled with the entries from 

both given arrays in sequence. Reshaping the dimensionality of an array 

with np.reshape(...) is only possible as long as the number of elements in the 

array does not change. These circumstances originate from the fact that 

NumPy's arrays must be views on contiguous memory buffers. A replacement 

package called Blaze attempts to overcome this limitation.
[17]

 

Algorithms that are not expressible as a vectorized operation will 

typically run slowly because they must be implemented in "pure Python", while 

vectorization may increase memory complexity of some operations from 

constant to linear, because temporary arrays must be created that are as large as 

the inputs. Runtime compilation of numerical code has been implemented by 

https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/Matplotlib
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
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https://en.wikipedia.org/wiki/Mask_(computing)#Image_masks
https://en.wikipedia.org/wiki/Interest_point_detection
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Stride_of_an_array
https://en.wikipedia.org/wiki/NumPy#cite_note-cise-7
https://en.wikipedia.org/wiki/Dynamic_array
https://en.wikipedia.org/wiki/Dynamic_array
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https://en.wikipedia.org/wiki/NumPy#cite_note-17
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several groups to avoid these problems; open source solutions that interoperate 

with NumPy include scipy.weave, numexpr
[18]

 and Numba. Cython and Pythran 

are static-compiling alternatives to these. 

 

The Basics 

NumPy‟s main object is the homogeneous multidimensional array. It is a 

table of elements (usually numbers), all of the same type, indexed by a tuple of 

positive integers. In NumPy dimensions are called axes. 

For example, the coordinates of a point in 3D space [1, 2, 1] has one axis. 

That axis has 3 elements in it, so we say it has a length of 3. In the example 

pictured below, the array has 2 axes. The first axis has a length of 2, the second 

axis has a length of 3. 

[[ 1., 0., 0.], 

[ 0., 1., 2.]] 

 

NumPy‟s array class is called ndarray. It is also known by the alias array. 

Note that numpy.array is not the same as the Standard Python Library 

class array.array, which only handles one-dimensional arrays and offers less 

functionality. The more important attributes of an ndarray object are: 

ndarray.ndim: 

the number of axes (dimensions) of the array. 

 

ndarray.shape: 

the dimensions of the array. This is a tuple of integers indicating the size 

of the array in each dimension. For a matrix with nrows 

and m columns, shape will be (n,m). The length of the shape tuple is therefore 

the number of axes, ndim. 

 

ndarray.size 

the total number of elements of the array. This is equal to the product of 

the elements of shape. 

ndarray.dtype 

an object describing the type of the elements in the array. One can create or 

specify dtype‟s using standard Python types. Additionally NumPy provides 

types of its own. numpy.int32, numpy.int16, and numpy.float64 are some 

examples. 

 

ndarray.itemsize 

the size in bytes of each element of the array. For example, an array of 

elements of type float64 has itemsize 8 (=64/8), while one of type complex32 

has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize. 

 

ndarray.data 

https://en.wikipedia.org/wiki/NumPy#cite_note-18
https://en.wikipedia.org/wiki/Numba
https://en.wikipedia.org/wiki/Cython
https://en.wikipedia.org/w/index.php?title=Pythran&action=edit&redlink=1
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the buffer containing the actual elements of the array. Normally, we won‟t need 

to use this attribute because we will access the elements in an array using 

indexing facilities. 

 

An example 

>>> import numpy as np 

>>> a = np.arange(15).reshape(3, 5) 

>>> a 

array([[ 0,  1,  2,  3,  4], 

       [ 5,  6,  7,  8,  9], 

       [10, 11, 12, 13, 14]]) 

>>>a.shape 

(3, 5) 

>>>a.ndim 

2 

>>>a.dtype.name 

'int64' 

>>>a.itemsize 

8 

>>>a.size 

15 

>>> type(a) 

<type 'numpy.ndarray'> 

>>> b = np.array([6, 7, 8]) 

>>> b 

array([6, 7, 8]) 

>>> type(b) 

<type 'numpy.ndarray'> 

Array Creation 

There are several ways to create arrays. 

For example, you can create an array from a regular Python list or tuple using 

the array function. The type of the resulting array is deduced from the type of 

the elements in the sequences. 

>>> 

>>> import numpy as np 

>>> a = np.array([2,3,4]) 

>>> a 

array([2, 3, 4]) 

>>>a.dtype 

dtype('int64') 

>>> b = np.array([1.2, 3.5, 5.1]) 

>>>b.dtype 
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dtype('float64') 

 

A frequent error consists in calling array with multiple numeric arguments, 

rather than providing a single list of numbers as an argument. 

>>> 

>>> a = np.array(1,2,3,4)    # WRONG 

>>> a = np.array([1,2,3,4])  # RIGHT 

 

array transforms sequences of sequences into two-dimensional arrays, 

sequences of sequences of sequences into three-dimensional arrays, and so on. 

>>> 

>>> b = np.array([(1.5,2,3), (4,5,6)]) 

>>> b 

array([[ 1.5,  2. ,  3. ], 

       [ 4. ,  5. ,  6. ]]) 

 

The type of the array can also be explicitly specified at creation time: 

>>> 

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) 

>>> c 

array([[ 1.+0.j,  2.+0.j], 

       [ 3.+0.j,  4.+0.j]]) 

 

Often, the elements of an array are originally unknown, but its size is 

known. Hence, NumPy offers several functions to create arrays with initial 

placeholder content. These minimize the necessity of growing arrays, an 

expensive operation. 

The function zeros creates an array full of zeros, the function ones creates 

an array full of ones, and the function empty creates an array whose initial 

content is random and depends on the state of the memory. By default, the 

dtype of the created array isfloat64. 

>>> 

>>>np.zeros( (3,4) ) 

array([[ 0.,  0.,  0.,  0.], 

       [ 0.,  0.,  0.,  0.], 

       [ 0.,  0.,  0.,  0.]]) 

>>>np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified 

array([[[ 1, 1, 1, 1], 

        [ 1, 1, 1, 1], 

        [ 1, 1, 1, 1]], 

       [[ 1, 1, 1, 1], 

        [ 1, 1, 1, 1], 
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        [ 1, 1, 1, 1]]], dtype=int16) 

>>>np.empty( (2,3) )                                 # uninitialized, output may vary 

array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260], 

[  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]]) 

 

To create sequences of numbers, NumPy provides a function analogous 

to range that returns arrays instead of lists. 

>>> 

>>>np.arange( 10, 30, 5 ) 

array([10, 15, 20, 25]) 

>>>np.arange( 0, 2, 0.3 )                 # it accepts float arguments 

array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8]) 

 

When arange is used with floating point arguments, it is generally not 

possible to predict the number of elements obtained, due to the finite floating 

point precision. For this reason, it is usually better to use the 

function linspace that receives as an argument the number of elements that we 

want, instead of the step: 

>>> 

>>> from numpy import pi 

>>>np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2 

array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ]) 

>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of 

points 

>>> f = np.sin(x) 

 

5.2 PANDAS: 

 

Pandas is an open source, BSD-licensed library providing high-performance, 

easy-to-use data structures and data analysis tools for the Python programming 

language. 

Pandas is a Python package providing fast, flexible, and expressive data 

structures designed to make working with “relational” or “labeled” data both 

easy and intuitive. It aims to be the fundamental high-level building block for 

doing practical, real world data analysis in Python. Additionally, it has the 

broader goal of becoming the most powerful and flexible open source data 

analysis / manipulation tool available in any language. It is already well on 

its way toward this goal. 

pandas is well suited for many different kinds of data: 
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 Tabular data with heterogeneously-typed columns, as in an SQL 

table or Excel spreadsheet 

 Ordered and unordered (not necessarily fixed-frequency) time 

series data. 

 Arbitrary matrix data (homogeneously typed or heterogeneous) 

with row and column labels 

 Any other form of observational / statistical data sets. The data 

actually need not be labeled at all to be placed into a pandas data 

structure 

The two primary data structures of pandas, Series (1-dimensional) 

and DataFrame (2-dimensional), handle the vast majority of typical use cases 

in finance, statistics, social science, and many areas of engineering. For R 

users, DataFrame provides everything that R‟s data.frame provides and much 

more. pandas is built on top of NumPy and is intended to integrate well within a 

scientific computing environment with many other 3rd party libraries. 

Here are just a few of the things that pandas does well: 

 Easy handling of missing data (represented as NaN) in floating 

point as well as non-floating point data 

 Size mutability: columns can be inserted and deleted from 

DataFrame and higher dimensional objects 

 Automatic and explicit data alignment: objects can be explicitly 

aligned to a set of labels, or the user can simply ignore the labels 

and let Series, DataFrame, etc. automatically align the data for you 

in computations 

 Powerful, flexible group by functionality to perform split-apply-

combine operations on data sets, for both aggregating and 

transforming data 

 Make it easy to convert ragged, differently-indexed data in other 

Python and NumPy data structures into DataFrame objects 

 Intelligent label-based slicing, fancy indexing, and subsetting of 

large data sets 

 Intuitive merging and joining data sets 

 Flexible reshaping and pivoting of data sets 

 Hierarchical labeling of axes (possible to have multiple labels per 

tick) 

 Robust IO tools for loading data from flat files (CSV and 

delimited), Excel files, databases, and saving / loading data from 

the ultrafast HDF5 format 
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 Time series-specific functionality: date range generation and 

frequency conversion, moving window statistics, moving window 

linear regressions, date shifting and lagging, etc. 

Many of these principles are here to address the shortcomings frequently 

experienced using other languages / scientific research environments. For data 

scientists, working with data is typically divided into multiple stages: munging 

and cleaning data, analyzing / modeling it, then organizing the results of the 

analysis into a form suitable for plotting or tabular display. pandas is the ideal 

tool for all of these tasks. 

Some other notes : 

 pandas is fast. Many of the low-level algorithmic bits have been 

extensively tweaked in Cythoncode. However, as with anything 

else generalization usually sacrifices performance. So if you focus 

on one feature for your application you may be able to create a 

faster specialized tool. 

 pandas is a dependency of statsmodels, making it an important part 

of the statistical computing ecosystem in Python. 

 pandas has been used extensively in production in financial 

applications. 

5.3 DATA STRUCTURES 

Dimensions Name Description 

1 Series 1D labeled homogeneously-typed array 

2 DataFrame 

General 2D labeled, size-mutable tabular 

structure with potentially heterogeneously-typed 

column 

Why more than one data structure? 

The best way to think about the pandas data structures is as flexible containers 

for lower dimensional data. For example, DataFrame is a container for Series, 

and Series is a container for scalars. We would like to be able to insert and 

remove objects from these containers in a dictionary-like fashion. 

Also, we would like sensible default behaviors for the common API functions 

which take into account the typical orientation of time series and cross-sectional 

data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is 

placed on the user to consider the orientation of the data set when writing 

https://cython.org/
https://www.statsmodels.org/stable/index.html
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functions; axes are considered more or less equivalent (except when C- or 

Fortran-contiguousness matters for performance). In pandas, the axes are 

intended to lend more semantic meaning to the data; i.e., for a particular data set 

there is likely to be a “right” way to orient the data. The goal, then, is to reduce 

the amount of mental effort required to code up data transformations in 

downstream functions. 

For example, with tabular data (DataFrame) it is more semantically helpful to 

think of the index (the rows) and the columns rather than axis 0 and axis 1. 

Iterating through the columns of the DataFrame thus results in more readable 

code: 

for col indf.columns: 

    series = df[col] 

# do something with series 

Mutability and copying of data 

All pandas data structures are value-mutable (the values they contain can be 

altered) but not always size-mutable. The length of a Series cannot be changed, 

but, for example, columns can be inserted into a DataFrame. However, the vast 

majority of methods produce new objects and leave the input data untouched. In 

general we like to favor immutability where sensible. 

Intro to Data Structures 

We‟ll start with a quick, non-comprehensive overview of the fundamental data 

structures in pandas to get you started. The fundamental behavior about data 

types, indexing, and axis labeling / alignment apply across all of the objects. To 

get started, import NumPy and load pandas into your namespace: 

In [1]: importnumpyasnp 

 

In [2]: importpandasaspd 

Here is a basic tenet to keep in mind: data alignment is intrinsic. The link 

between labels and data will not be broken unless done so explicitly by you. 
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We‟ll give a brief intro to the data structures, then consider all of the broad 

categories of functionality and methods in separate sections. 

Series 

Series is a one-dimensional labeled array capable of holding any data type 

(integers, strings, floating point numbers, Python objects, etc.). The axis labels 

are collectively referred to as the index. The basic method to create a Series is 

to call: 

>>>s = pd.Series(data, index=index) 

Here, data can be many different things: 

 a Python dict 

 anndarray 

 a scalar value (like 5) 

The passed index is a list of axis labels. Thus, this separates into a few cases 

depending on what data is: 

From ndarray 

If data is anndarray, index must be the same length as data. If no index is 

passed, one will be created having values [0, ..., len(data) - 1]. 

In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) 

 

In [4]: s 

Out[4]:  

a    0.469112 

b   -0.282863 

c   -1.509059 

d   -1.135632 

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
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e    1.212112 

dtype: float64 

 

In [5]: s.index 

Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object') 

 

In [6]: pd.Series(np.random.randn(5)) 

Out[6]:  

0   -0.173215 

1    0.119209 

2   -1.044236 

3   -0.861849 

4   -2.104569 

dtype: float64 

Note 

  

pandas supports non-unique index values. If an operation that does not support 

duplicate index values is attempted, an exception will be raised at that time. The 

reason for being lazy is nearly all performance-based (there are many instances 

in computations, like parts of GroupBy, where the index is not used). 

From dict 

Series can be instantiated from dicts: 

In [7]: d = {'b': 1, 'a': 0, 'c': 2} 
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In [8]: pd.Series(d) 

Out[8]:  

b    1 

a    0 

c    2 

dtype: int64 

Note 

  

When the data is a dict, and an index is not passed, the Series index will be 

ordered by the dict‟s insertion order, if you‟re using Python version >= 3.6 and 

Pandas version >= 0.23. 

If you‟re using Python < 3.6 or Pandas < 0.23, and an index is not passed, 

the Series index will be the lexically ordered list of dict keys. 

In the example above, if you were on a Python version lower than 3.6 or a 

Pandas version lower than 0.23, the Series would be ordered by the lexical 

order of the dict keys (i.e. ['a', 'b', 'c'] rather than ['b', 'a', 'c']). 

If an index is passed, the values in data corresponding to the labels in the index 

will be pulled out. 

In [9]: d = {'a': 0., 'b': 1., 'c': 2.} 

 

In [10]: pd.Series(d) 

Out[10]:  

a    0.0 

b    1.0 
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c    2.0 

dtype: float64 

 

In [11]: pd.Series(d, index=['b', 'c', 'd', 'a']) 

Out[11]:  

b    1.0 

c    2.0 

d    NaN 

a    0.0 

dtype: float64 

Note 

  

NaN (not a number) is the standard missing data marker used in pandas. 

From scalar value 

If data is a scalar value, an index must be provided. The value will be repeated 

to match the length of index. 

In [12]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e']) 

Out[12]:  

a    5.0 

b    5.0 

c    5.0 

d    5.0 
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e    5.0 

dtype: float64 

Series is ndarray-like 

Series acts very similarly to a ndarray, and is a valid argument to most NumPy 

functions. However, operations such as slicing will also slice the index. 

In [13]: s[0] 

Out[13]: 0.46911229990718628 

 

In [14]: s[:3] 

Out[14]:  

a    0.469112 

b   -0.282863 

c   -1.509059 

dtype: float64 

 

In [15]: s[s >s.median()] 

Out[15]:  

a    0.469112 

e    1.212112 

dtype: float64 
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In [16]: s[[4, 3, 1]] 

Out[16]:  

e    1.212112 

d   -1.135632 

b   -0.282863 

dtype: float64 

 

In [17]: np.exp(s) 

Out[17]:  

a    1.598575 

b    0.753623 

c    0.221118 

d    0.321219 

e    3.360575 

dtype: float64 

Note 

  

We will address array-based indexing like s[[4, 3, 1]] in section. 

Like a NumPy array, a pandas Series has a dtype. 

In [18]: s.dtype 

Out[18]: dtype('float64') 

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dtype.html#pandas.Series.dtype
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This is often a NumPy dtype. However, pandas and 3rd-party libraries extend 

NumPy‟s type system in a few places, in which case the dtype would be 

a ExtensionDtype. Some examples within pandas are Categorical 

Data and Nullable Integer Data Type. See dtypes for more. 

If you need the actual array backing a Series, use Series.array. 

In [19]: s.array 

Out[19]:  

<PandasArray> 

[ 0.46911229990718628, -0.28286334432866328,  -1.5090585031735124, 

  -1.1356323710171934,   1.2121120250208506] 

Length: 5, dtype: float64 

Accessing the array can be useful when you need to do some operation without 

the index (to disable automatic alignment, for example). 

Series.array will always be an ExtensionArray. Briefly, an ExtensionArray is 

a thin wrapper around one or more concrete arrays like a numpy.ndarray. 

Pandas knows how to take an ExtensionArray and store it in a Series or a 

column of a DataFrame. See dtypes for more. 

While Series is ndarray-like, if you need an actual ndarray, then 

use Series.to_numpy(). 

In [20]: s.to_numpy() 

Out[20]: array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121]) 

Even if the Series is backed by a ExtensionArray, Series.to_numpy() will 

return a NumPy ndarray. 

Series is dict-like 

A Series is like a fixed-size dict in that you can get and set values by index 

label: 

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionDtype.html#pandas.api.extensions.ExtensionDtype
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical
http://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html#integer-na
http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.array.html#pandas.Series.array
http://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html#dsintro-alignment
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.array.html#pandas.Series.array
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.to_numpy.html#pandas.Series.to_numpy
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.to_numpy.html#pandas.Series.to_numpy
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In [21]: s['a'] 

Out[21]: 0.46911229990718628 

 

In [22]: s['e'] = 12. 

 

In [23]: s 

Out[23]:  

a     0.469112 

b    -0.282863 

c    -1.509059 

d    -1.135632 

e    12.000000 

dtype: float64 

 

In [24]: 'e' in s 

Out[24]: True 

 

In [25]: 'f' in s 

Out[25]: False 

If a label is not contained, an exception is raised: 
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>>>s['f'] 

KeyError: 'f' 

Using the get method, a missing label will return None or specified default: 

In [26]: s.get('f') 

 

In [27]: s.get('f', np.nan) 

Out[27]: nan 

See also the section on attribute access. 

Vectorized operations and label alignment with Series 

When working with raw NumPy arrays, looping through value-by-value is 

usually not necessary. The same is true when working with Series in pandas. 

Series can also be passed into most NumPy methods expecting anndarray. 

In [28]: s + s 

Out[28]:  

a     0.938225 

b    -0.565727 

c    -3.018117 

d    -2.271265 

e    24.000000 

dtype: float64 

 

In [29]: s * 2 

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-attribute-access
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Out[29]:  

a     0.938225 

b    -0.565727 

c    -3.018117 

d    -2.271265 

e    24.000000 

dtype: float64 

 

In [30]: np.exp(s) 

Out[30]:  

a         1.598575 

b         0.753623 

c         0.221118 

d         0.321219 

e    162754.791419 

dtype: float64 

A key difference between Series and ndarray is that operations between Series 

automatically align the data based on label. Thus, you can write computations 

without giving consideration to whether the Series involved have the same 

labels. 

In [31]: s[1:] + s[:-1] 

Out[31]:  
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a         NaN 

b   -0.565727 

c   -3.018117 

d   -2.271265 

e         NaN 

dtype: float64 

The result of an operation between unaligned Series will have the union of the 

indexes involved. If a label is not found in one Series or the other, the result will 

be marked as missing NaN. Being able to write code without doing any explicit 

data alignment grants immense freedom and flexibility in interactive data 

analysis and research. The integrated data alignment features of the pandas data 

structures set pandas apart from the majority of related tools for working with 

labeled data. 

Note 

  

In general, we chose to make the default result of operations between differently 

indexed objects yield theunion of the indexes in order to avoid loss of 

information. Having an index label, though the data is missing, is typically 

important information as part of a computation. You of course have the option 

of dropping labels with missing data via the dropna function. 

Name attribute 

Series can also have a name attribute: 

In [32]: s = pd.Series(np.random.randn(5), name='something') 

 

In [33]: s 

Out[33]:  
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0   -0.494929 

1    1.071804 

2    0.721555 

3   -0.706771 

4   -1.039575 

Name: something, dtype: float64 

 

In [34]: s.name 

Out[34]: 'something' 

The Series name will be assigned automatically in many cases, in particular 

when taking 1D slices of DataFrame as you will see below. 

New in version 0.18.0. 

You can rename a Series with the pandas.Series.rename() method. 

In [35]: s2 = s.rename("different") 

 

In [36]: s2.name 

Out[36]: 'different' 

Note that s and s2 refer to different objects. 

5.4 DataFrame 

DataFrame is a 2-dimensional 45 abelled data structure with columns of 

potentially different types. You can think of it like a spreadsheet or SQL table, 

or a dict of Series objects. It is generally the most commonly used pandas 

object. Like Series, DataFrame accepts many different kinds of input: 

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.rename.html#pandas.Series.rename
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 Dict of 1D ndarrays, lists, dicts, or Series 

 2-D numpy.ndarray 

 Structured or record ndarray 

 A Series 

 Another DataFrame 

Along with the data, you can optionally pass index (row labels) 

and columns (column labels) arguments. If you pass an index and / or columns, 

you are guaranteeing the index and / or columns of the resulting DataFrame. 

Thus, a dict of Series plus a specific index will discard all data not matching up 

to the passed index. 

If axis labels are not passed, they will be constructed from the input data based 

on common sense rules. 

Note 

  

When the data is a dict, and columns is not specified, the DataFrame columns 

will be ordered by the dict‟s insertion order, if you are using Python version >= 

3.6 and Pandas >= 0.23. 

If you are using Python < 3.6 or Pandas < 0.23, and columns is not specified, 

the DataFrame columns will be the lexically ordered list of dict keys. 

From dict of Series or dicts 

The resulting index will be the union of the indexes of the various Series. If 

there are any nested dicts, these will first be converted to Series. If no columns 

are passed, the columns will be the ordered list of dict keys. 

In [37]: d = {„one‟: pd.Series([1., 2., 3.], index=[„a‟, „b‟, „c‟]), 

….: „two‟: pd.Series([1., 2., 3., 4.], index=[„a‟, „b‟, „c‟, „d‟])} 

….:  

 

In [38]: df = pd.DataFrame(d) 

In [39]: df 

https://docs.scipy.org/doc/numpy/user/basics.rec.html
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Out[39]:  

one  two 

a  1.0  1.0 

b  2.0  2.0 

c  3.0  3.0 

d  NaN  4.0 

In [40]: pd.DataFrame(d, index=[„d‟, „b‟, „a‟]) 

Out[40]:  

one  two 

d  NaN  4.0 

b  2.0  2.0 

a  1.0  1.0 

In [41]: pd.DataFrame(d, index=[„d‟, „b‟, „a‟], columns=[„two‟, „three‟]) 

Out[41]:  

   two three 

d  4.0NaN 

b  2.0NaN 

a  1.0NaN 

The row and column labels can be accessed respectively by accessing 

the index and columns attributes: 

Note 
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When a particular set of columns is passed along with a dict of data, the passed 

columns override the keys in the dict. 

In [42]: df.index 

Out[42]: Index([„a‟, „b‟, „c‟, „d‟], dtype=‟object‟) 

In [43]: df.columns 

Out[43]: Index([„one‟, „two‟], dtype=‟object‟) 

From dict of ndarrays / lists 

The ndarrays must all be the same length. If an index is passed, it must clearly 

also be the same length as the arrays. If no index is passed, the result will 

be range(n), where n is the array length. 

In [44]: d = {„one‟: [1., 2., 3., 4.], 

….: „two‟: [4., 3., 2., 1.]} 

….:  

In [45]: pd.DataFrame(d) 

Out[45]:  

one  two 

2 1.0  4.0 

3 2.0  3.0 

2  3.0  2.0 

3  4.0  1.0 

In [46]: pd.DataFrame(d, index=[„a‟, „b‟, „c‟, „d‟]) 

Out[46]:  

one  two 
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a  1.0  4.0 

b  2.0  3.0 

c  3.0  2.0 

d  4.0  1.0 

From structured or record array 

This case is handled identically to a dict of arrays. 

In [47]: data = np.zeros((2, ), dtype=[(„A‟, „i4‟), („B‟, „f4‟), („C‟, „a10‟)]) 

In [48]: data[:] = [(1, 2., „Hello‟), (2, 3., “World”)] 

In [49]: pd.DataFrame(data) 

Out[49]:  

   A    B         C 

4 1  2.0b‟Hello‟ 

5 2  3.0b‟World‟ 

In [50]: pd.DataFrame(data, index=[„first‟, „second‟]) 

Out[50]:  

        A    B         C 

first   1  2.0b‟Hello‟ 

second  2  3.0  b‟World‟ 

In [51]: pd.DataFrame(data, columns=[„C‟, „A‟, „B‟]) 

Out[51]:  

C  A    B 
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6 b‟Hello‟  1  2.0 

7 b‟World‟  2  3.0 

Note 

  

DataFrame is not intended to work exactly like a 2-dimensional NumPy 

ndarray. 

From a list of dicts 

In [52]: data2 = [{„a‟: 1, „b‟: 2}, {„a‟: 5, „b‟: 10, „c‟: 20}] 

 

In [53]: pd.DataFrame(data2) 

Out[53]:  

   a   b     c 

0  1   2   NaN 

8 5  10  20.0 

In [54]: pd.DataFrame(data2, index=[„first‟, „second‟]) 

Out[54]:  

        a   b     c 

first   1   2   NaN 

second  5  10  20.0 

In [55]: pd.DataFrame(data2, columns=[„a‟, „b‟]) 

Out[55]:  

   a   b 
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0  1   2 

9 5  10 

From a dict of tuples 

You can automatically create a MultiIndexed frame by passing a tuples 

dictionary. 

In [56]: pd.DataFrame({(„a‟, „b‟): {(„A‟, „B‟): 1, („A‟, „C‟): 2}, 

….:    („a‟, „a‟): {(„A‟, „C‟): 3, („A‟, „B‟): 4}, 

….:    („a‟, „c‟): {(„A‟, „B‟): 5, („A‟, „C‟): 6}, 

….:    („b‟, „a‟): {(„A‟, „C‟): 7, („A‟, „B‟): 8}, 

….:    („b‟, „b‟): {(„A‟, „D‟): 9, („A‟, „B‟): 10}}) 

….:  

Out[56]:  

       a              b       

       b    a    c    a     b 

A B  1.0  4.0  5.0  8.0  10.0 

C  2.0  3.0  6.0  7.0   NaN 

D  NaNNaNNaNNaN   9.0 

From a Series 

The result will be a DataFrame with the same index as the input Series, and with 

one column whose name is the original name of the Series (only if no other 

column name provided). 

Missing Data 
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Much more will be said on this topic in the Missing data section. To construct a 

DataFrame with missing data, we use np.nan to represent missing values. 

Alternatively, you may pass a numpy.MaskedArray as the data argument to the 

DataFrame constructor, and its masked entries will be considered missing. 

Alternate Constructors 

DataFrame.from_dict 

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and 

returns a DataFrame. It operates like the DataFrame constructor except for 

the orient parameter which is „columns‟ by default, but which can be set 

to „index‟ in order to use the dict keys as row labels. 

In [57]: pd.DataFrame.from_dict(dict([(„A‟, [1, 2, 3]), („B‟, [4, 5, 6])])) 

Out[57]:  

A  B 

10 1  4 

11 2  5 

2  3  6 

If you pass orient=‟index‟, the keys will be the row labels. In this case, you can 

also pass the desired column names: 

In [58]: pd.DataFrame.from_dict(dict([(„A‟, [1, 2, 3]), („B‟, [4, 5, 6])]), 

….:                        orient=‟index‟, columns=[„one‟, „two‟, „three‟]) 

….:  

Out[58]:  one  two  three 

A    1    2      3 

B    4    5      6 

DataFrame.from_records 

http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data
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DataFrame.from_records takes a list of tuples or an ndarray with structured 

dtype. It works analogously to the normal DataFrame constructor, except that 

the resulting DataFrame index may be a specific field of the structured dtype. 

For example: 

In [59]: data 

Out[59]:  

array([(1,  2., b‟Hello‟), (2,  3., b‟World‟)], 

dtype=[(„A‟, „<i4‟), („B‟, „<f4‟), („C‟, „S10‟)]) 

In [60]: pd.DataFrame.from_records(data, index=‟C‟) 

Out[60]:  

          A    BC 

b‟Hello‟  1  2.0 

b‟World‟  2  3.0 

Column selection, addition, deletion 

You can treat a DataFrame semantically like a dict of like-indexed Series 

objects. Getting, setting, and deleting columns works with the same syntax as 

the analogous dict operations: 

In [61]: df[„one‟] 

Out[61]:  

a    1.0 

b    2.0 

c    3.0 

d    NaN 
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Name: one, dtype: float64 

In [62]: df[„three‟] = df[„one‟] * df[„two‟] 

In [63]: df[„flag‟] = df[„one‟] > 2 

In [64]: df 

Out[64]:  

one  two  three   flag 

a  1.0  1.0    1.0  False 

b  2.0  2.0    4.0  False 

c  3.0  3.0    9.0   True 

d  NaN  4.0    NaN  False 

Columns can be deleted or popped like with a dict: 

In [65]: deldf[„two‟] 

In [66]: three = df.pop(„three‟) 

In [67]: df 

Out[67]:  

   one   flag 

a  1.0  False 

b  2.0  False 

c  3.0   True 

d  NaN  False 
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When inserting a scalar value, it will naturally be propagated to fill the column: 

In [68]: df[„foo‟] = „bar‟ 

In [69]: df 

Out[69]:  

   one   flag  foo 

a  1.0  False  bar 

b  2.0  False  bar 

c  3.0   True  bar 

d  NaN  False  bar 

When inserting a Series that does not have the same index as the DataFrame, it 

will be conformed to the DataFrame‟s index: 

In [70]: df[„one_trunc‟] = df[„one‟][:2] 

In [71]: df 

Out[71]:  

   one   flag  fooone_trunc 

a  1.0  False  bar        1.0 

b  2.0  False  bar        2.0 

c  3.0   True  bar        NaN 

d  NaN  False  bar        NaN 

You can insert raw ndarrays but their length must match the length of the 

DataFrame‟s index. 
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By default, columns get inserted at the end. The insert function is available to 

insert at a particular location in the columns: 

In [72]: df.insert(1, „bar‟, df[„one‟]) 

In [73]: df 

Out[73]:  

one  bar   flag  foo  one_trunc 

a  1.0  1.0  False  bar        1.0 

b  2.0  2.0  False  bar        2.0 

c  3.0  3.0   True  bar        NaN 

d  NaNNaN  False  bar        NaN 

Assigning New Columns in Method Chains 

Inspired by dplyr‟s mutate verb, DataFrame has an assign() method that allows 

you to easily create new columns that are potentially derived from existing 

columns. 

In [74]: iris = pd.read_csv(„data/iris.data‟) 

In [75]: iris.head() 

Out[75]:  

SepalLengthSepalWidthPetalLengthPetalWidth         Name 

0          5.1         3.5          1.4         0.2  Iris-setosa 

1          4.9         3.0          1.4         0.2  Iris-setosa 

2          4.7         3.2          1.3         0.2  Iris-setosa 

3          4.6         3.1          1.5         0.2  Iris-setosa 

https://dplyr.tidyverse.org/reference/mutate.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign
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4          5.0         3.6          1.4         0.2  Iris-setosa 

 

In [76]: (iris.assign(sepal_ratio=iris[„SepalWidth‟] / iris[„SepalLength‟]) 

….:   .head()) 

….: 

Out[76]:  

SepalLengthSepalWidthPetalLengthPetalWidth         Name  sepal_ratio 

0          5.1         3.5          1.4         0.2  Iris-setosa     0.686275 

1          4.9         3.0          1.4         0.2  Iris-setosa     0.612245 

2          4.7         3.2          1.3         0.2  Iris-setosa     0.680851 

3          4.6         3.1          1.5         0.2  Iris-setosa     0.673913 

4          5.0         3.6          1.4         0.2  Iris-setosa     0.720000 

In the example above, we inserted a precomputed value. We can also pass in a 

function of one argument to be evaluated on the DataFrame being assigned to. 

In [77]: iris.assign(sepal_ratio=lambda x: (x[„SepalWidth‟] / 

x[„SepalLength‟])).head() 

Out[77]:  

SepalLengthSepalWidthPetalLengthPetalWidth         Name  sepal_ratio 

0          5.1         3.5          1.4         0.2  Iris-setosa     0.686275 

1          4.9         3.0          1.4         0.2  Iris-setosa     0.612245 

2          4.7         3.2          1.3         0.2  Iris-setosa     0.680851 

3          4.6         3.1          1.5         0.2  Iris-setosa     0.673913 
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4          5.0         3.6          1.4         0.2  Iris-setosa     0.720000 

assign always returns a copy of the data, leaving the original DataFrame 

untouched. 

Passing a callable, as opposed to an actual value to be inserted, is useful when 

you don‟t have a reference to the DataFrame at hand. This is common when 

using assign in a chain of operations. For example, we can limit the 

DataFrameto just those observations with a Sepal Length greater than 5, 

calculate the ratio, and plot: 

In [78]: (iris.query(„SepalLength> 5‟) 

….:   .assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength, 

….: PetalRatio=lambda x: x.PetalWidth / x.PetalLength) 

….:   .plot(kind=‟scatter‟, x=‟SepalRatio‟, y=‟PetalRatio‟)) 

….:  

Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2b527b1a58> 

 

Fig 6 Matplot Axes 

Since a function is passed in, the function is computed on the DataFrame being 

assigned to. Importantly, this is the DataFramethat‟s been filtered to those rows 

with sepal length greater than 5. The filtering happens first, and then the ratio 

calculations. This is an example where we didn‟t have a reference to 

the filtered DataFrame available. 
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The function signature for assign is simply **kwargs. The keys are the column 

names for the new fields, and the values are either a value to be inserted (for 

example, a Series or NumPy array), or a function of one argument to be called 

on the DataFrame. A copy of the original DataFrame is returned, with the new 

values inserted. 

Changed in version 0.23.0. 

Starting with Python 3.6 the order of **kwargs is preserved. This allows 

for dependent assignment, where an expression later in **kwargs can refer to a 

column created earlier in the same assign(). 

In [79]: dfa = pd.DataFrame({“A”: [1, 2, 3], 

….: “B”: [4, 5, 6]}) 

….:  

 

In [80]: dfa.assign(C=lambda x: x[„A‟] + x[„B‟], 

….:            D=lambda x: x[„A‟] + x[„C‟]) 

….:  

Out[80]:  

A  B  C   D 

0  1  4  5   6 

1  2  5  7   9 

2  3  6  9  12 

In the second expression, x[„C‟] will refer to the newly created column, that‟s 

equal to dfa[„A‟] + dfa[„B‟]. 

To write code compatible with all versions of Python, split the assignment in 

two. 

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign
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In [81]: dependent = pd.DataFrame({“A”: [1, 1, 1]}) 

 

In [82]: (dependent.assign(A=lambda x: x[„A‟] + 1) 

….:           .assign(B=lambda x: x[„A‟] + 2)) 

….:  

Out[82]:  

A  B 

12 2  4 

13 2  4 

2  2  4 

 

5.4MATPLOTLIB: 

 

Matplotlib is a Python 2D plotting library which produces publication quality 

figures in a variety of hardcopy formats and interactive environments across 

platforms. Matplotlib can be used in Python scripts, the Python 

and IPython shells, the Jupyter notebook, web application servers, and four 

graphical user interface toolkits. 

 

 
￼ 

http://ipython.org/
http://jupyter.org/
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￼ 

 

Matplotlib tries to make easy things easy and hard things possible. You can 

generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, 

etc., with just a few lines of code. For examples, see the sample 

plots and thumbnail gallery. 

For simple plotting the pyplot module provides a MATLAB-like interface, 

particularly when combined with IPython. For the power user, you have full 

control of line styles, font properties, axes properties, etc, via an object oriented 

interface or via a set of functions familiar to MATLAB users. 

Installing an official release 

Matplotlib and its dependencies are available as wheel packages for macOS, 

Windows and Linux distributions: 

python -m pip install -U pip 

python -m pip install -U matplotlib 

Although not required, we suggest also installing IPython for interactive use. To 

easily install a complete Scientific Python stack, see Scientific Python 

Distributions below. 

macOS 

To use the native OSX backend you will need a framework build build of 

Python. 

Test data 

The wheels (*.whl) on the PyPI download page do not contain test data or 

example code. 

If you want to try the many demos that come in the Matplotlib source 

distribution, download the *.tar.gz file and look in the examples subdirectory. 

To run the test suite: 

https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.0.3/gallery/index.html
https://matplotlib.org/3.0.3/users/installing.html#id3
https://matplotlib.org/3.0.3/users/installing.html#install-scipy-dists
https://matplotlib.org/3.0.3/users/installing.html#install-scipy-dists
https://matplotlib.org/3.0.3/users/installing.html#id4
https://matplotlib.org/3.0.3/faq/osx_framework.html#osxframework-faq
https://matplotlib.org/3.0.3/users/installing.html#id5
https://pypi.python.org/pypi/matplotlib/
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 extract the lib/matplotlib/tests or lib/mpl_toolkits/tests directories from 

the source distribution; 

 install test dependencies: pytest, Pillow, MiKTeX, GhostScript, ffmpeg, 

avconv, ImageMagick, and Inkscape; 

 run python -mpytest. 

Third-party distributions of Matplotlib: 

Scientific Python Distributions: 

Anaconda and Canopy and ActiveState are excellent choices that "just work" 

out of the box for Windows, macOS and common Linux 

platforms. WinPython is an option for Windows users. All of these distributions 

include Matplotlib and lots of other useful (data) science tools. 

Linux: using your package manager 

If you are on Linux, you might prefer to use your package manager. Matplotlib 

is packaged for almost every major Linux distribution. 

 Debian / Ubuntu: sudo apt-get install python3-matplotlib 

 Fedora: sudo dnf install python3-matplotlib 

 Red Hat: sudo yum install python3-matplotlib 

 Arch: sudo pacman -S python-matplotlib 

Installing from source 

If you are interested in contributing to Matplotlib development, running the 

latest source code, or just like to build everything yourself, it is not difficult to 

build Matplotlib from source. Grab the latest tar.gz release file from the PyPI 

files page, or if you want to develop Matplotlib or just need the latest bugfixed 

version, grab the latest git version Install from source. 

The standard environment variables CC, CXX, PKG_CONFIG are respected. 

This means you can set them if your toolchain is prefixed. This may be used for 

cross compiling. 

export CC=x86_64-pc-linux-gnu-gcc 

export CXX=x86_64-pc-linux-gnu-g++ 

export PKG_CONFIG=x86_64-pc-linux-gnu-pkg-config 

Once you have satisfied the requirements detailed below (mainly Python, 

NumPy, libpng and FreeType), you can build Matplotlib. 

cd matplotlib 

python -mpipinstall . 

https://pypi.python.org/pypi/pytest
https://inkscape.org/
https://matplotlib.org/3.0.3/users/installing.html#id6
https://matplotlib.org/3.0.3/users/installing.html#id7
https://www.continuum.io/downloads/
https://www.enthought.com/products/canopy/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/
https://matplotlib.org/3.0.3/users/installing.html#id8
https://matplotlib.org/3.0.3/users/installing.html#id9
https://pypi.python.org/pypi/matplotlib/
https://pypi.python.org/pypi/matplotlib/
https://pypi.python.org/pypi/matplotlib/
https://matplotlib.org/3.0.3/faq/installing_faq.html#install-from-git
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We provide a setup.cfg file which you can use to customize the build process. 

For example, which default backend to use, whether some of the optional 

libraries that Matplotlib ships with are installed, and so on. This file will be 

particularly useful to those packaging Matplotlib. 

If you have installed prerequisites to nonstandard places and need to inform 

Matplotlib where they are, edit setupext.py and add the base dirs to 

the basedir dictionary entry for your sys.platform; e.g., if the header of some 

required library is in /some/path/include/someheader.h, put /some/path in 

the basedir list for your platform. 

 

Dependencies 

Matplotlib requires the following dependencies: 

 Python (>= 3.5) 

 FreeType (>= 2.3) 

 libpng (>= 1.2) 

 NumPy (>= 1.10.0) 

 setuptools 

 cycler (>= 0.10.0) 

 dateutil (>= 2.1) 

 kiwisolver (>= 1.0.0) 

 pyparsing 

Optionally, you can also install a number of packages to enable better user 

interface toolkits. See What is a backend? for more details on the optional 

Matplotlib backends and the capabilities they provide. 

 tk (>= 8.3, != 8.6.0 or 8.6.1): for the Tk-based backends; 

 PyQt4 (>= 4.6) or PySide (>= 1.0.3): for the Qt4-based backends; 

 PyQt5: for the Qt5-based backends; 

 PyGObject or pgi (>= 0.0.11.2): for the GTK3-based backends; 

 wxpython (>= 4): for the WX-based backends; 

 cairocffi (>= 0.8) or pycairo: for the cairo-based backends; 

 Tornado: for the WebAgg backend; 

For better support of animation output format and image file formats, LaTeX, 

etc., you can install the following: 

 ffmpeg/avconv: for saving movies; 

 ImageMagick: for saving animated gifs; 

https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://matplotlib.org/3.0.3/users/installing.html#id10
https://www.python.org/downloads/
https://www.freetype.org/
http://www.libpng.org/
http://www.numpy.org/
https://setuptools.readthedocs.io/en/latest/
http://matplotlib.org/cycler/
https://pypi.python.org/pypi/python-dateutil
https://github.com/nucleic/kiwi
https://pyparsing.wikispaces.com/
https://matplotlib.org/3.0.3/tutorials/introductory/usage.html#what-is-a-backend
https://matplotlib.org/3.0.3/glossary/index.html#term-tk
https://pypi.python.org/pypi/PyQt4
https://pypi.python.org/pypi/PySide
https://pypi.python.org/pypi/PyQt5
https://pypi.org/project/PyGObject/
https://pypi.org/project/pgi/
https://matplotlib.org/3.0.3/glossary/index.html#term-wxpython
https://cairocffi.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pycairo
https://pypi.python.org/pypi/tornado
https://www.ffmpeg.org/
https://libav.org/avconv.html
https://www.imagemagick.org/script/index.php
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 Pillow (>= 3.4): for a larger selection of image file formats: JPEG, BMP, 

and TIFF image files; 

 LaTeX and GhostScript (>=9.0) : for rendering text with LaTeX. 

 

Building on Linux 

It is easiest to use your system package manager to install the dependencies. 

If you are on Debian/Ubuntu, you can get all the dependencies required to build 

Matplotlib with: 

sudo apt-get build-dep python-matplotlib 

If you are on Fedora, you can get all the dependencies required to build 

Matplotlib with: 

sudodnfbuilddep python-matplotlib 

If you are on RedHat, you can get all the dependencies required to build 

Matplotlib by first installing yum-builddep and then running: 

su -c "yum-builddep python-matplotlib" 

These commands do not build Matplotlib, but instead get and install the build 

dependencies, which will make building from source easier. 

Building on macOS 

The build situation on macOS is complicated by the various places one can get 

the libpng and FreeType requirements (MacPorts, Fink, /usr/X11R6), the 

different architectures (e.g., x86, ppc, universal), and the different macOS 

versions (e.g., 10.4 and 10.5). We recommend that you build the way we do for 

the macOS release: get the source from the tarball or the git repository and 

install the required dependencies through a third-party package manager. Two 

widely used package managers are Homebrew, and MacPorts. The following 

example illustrates how to install libpng and FreeType using brew: 

brew install libpngfreetypepkg-config 

If you are using MacPorts, execute the following instead: 

port install libpngfreetypepkgconfig 

After installing the above requirements, install Matplotlib from source by 

executing: 

python -mpipinstall . 

https://pillow.readthedocs.io/en/latest/
https://miktex.org/
https://ghostscript.com/download/
https://matplotlib.org/3.0.3/users/installing.html#id11
https://matplotlib.org/3.0.3/users/installing.html#id12


65 
 

Note that your environment is somewhat important. Some conda users have 

found that, to run the tests, their PYTHONPATH must include 

/path/to/anaconda/.../site-packages and their 

DYLD_FALLBACK_LIBRARY_PATH must include /path/to/anaconda/lib. 

 

Building on Windows 

The Python shipped from https://www.python.org is compiled with Visual 

Studio 2015 for 3.5+. Python extensions should be compiled with the same 

compiler, see e.g. https://packaging.python.org/guides/packaging-binary-

extensions/#setting-up-a-build-environment-on-windows for how to set up a 

build environment. 

Since there is no canonical Windows package manager, the methods for 

building FreeType, zlib, and libpng from source code are documented as a build 

script at matplotlib-winbuild. 

There are a few possibilities to build Matplotlib on Windows: 

 Wheels via matplotlib-winbuild 

 Wheels by using conda packages (see below) 

 Conda packages (see below) 

Wheel builds using conda packages 

This is a wheel build, but we use conda packages to get all the requirements. 

The binary requirements (png, FreeType,...) are statically linked and therefore 

not needed during the wheel install. 

Set up the conda environment. Note, if you want a qt backend, add pyqt to the 

list of conda packages. 

conda create -n "matplotlib_build" python=3.7 numpy python-dateutilpyparsing 

tornado cycler tklibpngzlibfreetypemsinttypes 

conda activate matplotlib_build 

For building, call the script build_alllocal.cmd in the root folder of the 

repository: 

build_alllocal.cmd 

https://matplotlib.org/3.0.3/users/installing.html#id13
https://github.com/jbmohler/matplotlib-winbuild
https://github.com/jbmohler/matplotlib-winbuild
https://matplotlib.org/3.0.3/users/installing.html#id14
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General Concepts 

matplotlib has an extensive codebase that can be daunting to many new users. 

However, most of matplotlib can be understood with a fairly simple conceptual 

framework and knowledge of a few important points. 

Plotting requires action on a range of levels, from the most general (e.g., 

'contour this 2-D array') to the most specific (e.g., 'color this screen pixel red'). 

The purpose of a plotting package is to assist you in visualizing your data as 

easily as possible, with all the necessary control -- that is, by using relatively 

high-level commands most of the time, and still have the ability to use the low-

level commands when needed. 

Therefore, everything in matplotlib is organized in a hierarchy. At the top of the 

hierarchy is the matplotlib "state-machine environment" which is provided by 

the matplotlib.pyplot module. At this level, simple functions are used to add 

plot elements (lines, images, text, etc.) to the current axes in the current figure. 

Note 

Pyplot's state-machine environment behaves similarly to MATLAB and should 

be most familiar to users with MATLAB experience. 

The next level down in the hierarchy is the first level of the object-oriented 

interface, in which pyplot is used only for a few functions such as figure 

creation, and the user explicitly creates and keeps track of the figure and axes 

objects. At this level, the user uses pyplot to create figures, and through those 

figures, one or more axes objects can be created. These axes objects are then 

used for most plotting actions. 

For even more control -- which is essential for things like embedding matplotlib 

plots in GUI applications -- the pyplot level may be dropped completely, 

leaving a purely object-oriented approach. 

# sphinx_gallery_thumbnail_number = 3 

importmatplotlib.pyplotasplt 

importnumpyasnp 

https://matplotlib.org/3.0.3/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
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Parts of a Figure 

 
Fig 7 Anatomy of Matplotlib  

The whole figure. The figure keeps track of all the child Axes, a smattering of 

'special' artists (titles, figure legends, etc), and the canvas. (Don't worry too 

much about the canvas, it is crucial as it is the object that actually does the 

drawing to get you your plot, but as the user it is more-or-less invisible to you). 

A figure can have any number of Axes, but to be useful should have at least 

one. 

5.5 SEABORN: 

Seaborn is a Python data visualization library based on matplotlib. It provides a 

high-level interface for drawing attractive and informative statistical graphics. 

An introduction to seaborn 

Seaborn is a library for making statistical graphics in Python. It is built on top 

of matplotlib and closely integrated with pandas data structures. 

Here is some of the functionality that seaborn offers: 

https://matplotlib.org/3.0.3/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/3.0.3/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/
https://matplotlib.org/
https://pandas.pydata.org/
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 A dataset-oriented API for examining relationships between multiple 

variables 

 Specialized support for using categorical variables to 

show observations or aggregate statistics 

 Options for visualizing univariate or bivariate distributions and 

for comparing them between subsets of data 

 Automatic estimation and plotting of linear regression models for 

different kinds dependent variables 

 Convenient views onto the overall structure of complex datasets 

 High-level abstractions for structuring multi-plot grids that let you easily 

build complex visualizations 

 Concise control over matplotlib figure styling with several built-in 

themes 

 Tools for choosing color palettes that faithfully reveal patterns in your 

data 

Seaborn aims to make visualization a central part of exploring and 

understanding data. Its dataset-oriented plotting functions operate on dataframes 

and arrays containing whole datasets and internally perform the necessary 

semantic mapping and statistical aggregation to produce informative plots. 

Here‟s an example of what this means: 

importseabornassns 

sns.set() 

tips = sns.load_dataset("tips") 

sns.relplot(x="total_bill", y="tip", col="time", 

            hue="smoker", style="smoker", size="size", 

            data=tips); 

https://seaborn.pydata.org/examples/scatter_bubbles.html#scatter-bubbles
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/faceted_lineplot.html#faceted-lineplot
https://seaborn.pydata.org/examples/jitter_stripplot.html#jitter-stripplot
https://seaborn.pydata.org/examples/pointplot_anova.html#pointplot-anova
https://seaborn.pydata.org/examples/distplot_options.html#distplot-options
https://seaborn.pydata.org/examples/joint_kde.html#joint-kde
https://seaborn.pydata.org/examples/horizontal_boxplot.html#horizontal-boxplot
https://seaborn.pydata.org/examples/anscombes_quartet.html#anscombes-quartet
https://seaborn.pydata.org/examples/logistic_regression.html#logistic-regression
https://seaborn.pydata.org/examples/scatterplot_matrix.html#scatterplot-matrix
https://seaborn.pydata.org/examples/faceted_histogram.html#faceted-histogram
https://seaborn.pydata.org/examples/pair_grid_with_kde.html#pair-grid-with-kde
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
https://seaborn.pydata.org/tutorial/color_palettes.html#palette-tutorial
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Fig 8 Seaborn plot 

 

A few things have happened here. Let‟s go through them one by one: 

1. We import seaborn, which is the only library necessary for this simple 

example. 

importseabornassns 

Behind the scenes, seaborn uses matplotlib to draw plots. Many tasks can be 

accomplished with only seaborn functions, but further customization might 

require using matplotlib directly. This is explained in more detail below. For 

interactive work, it‟s recommended to use a Jupyter/IPython interface 

in matplotlib mode, or else you‟ll have to call matplotlib.pyplot.show when you 

want to see the plot. 

2. We apply the default default seaborn theme, scaling, and color palette. 

sns.set() 

This uses the matplotlib rcParam system and will affect how all matplotlib plots 

look, even if you don‟t make them with seaborn. Beyond the default theme, 

there are several other options, and you can independently control the style and 

scaling of the plot to quickly translate your work between presentation contexts 

(e.g., making a plot that will have readable fonts when projected during a talk). 

If you like the matplotlib defaults or prefer a different theme, you can skip this 

step and still use the seaborn plotting functions. 

3. We load one of the example datasets. 

tips = sns.load_dataset("tips") 

https://seaborn.pydata.org/introduction.html#intro-plot-customization
https://ipython.readthedocs.io/en/stable/interactive/plotting.html
https://matplotlib.org/users/customizing.html
https://seaborn.pydata.org/tutorial/aesthetics.html#aesthetics-tutorial
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Most code in the docs will use the load_dataset() function to get quick access 

to an example dataset. There‟s nothing particularly special about these datasets; 

they are just pandas dataframes, and we could have loaded them 

with pandas.read_csv or build them by hand. Many examples use the “tips” 

dataset, which is very boring but quite useful for demonstration. The tips dataset 

illustrates the “tidy” approach to organizing a dataset. You‟ll get the most out of 

seaborn if your datasets are organized this way, and it is explained in more 

detail below. 

4. We draw a faceted scatter plot with multiple semantic variables. 

sns.relplot(x="total_bill", y="tip", col="time", 

            hue="smoker", style="smoker", size="size", 

            data=tips) 

This particular plot shows the relationship between five variables in the tips 

dataset. Three are numeric, and two are categorical. Two numeric variables 

(total_bill and tip) determined the position of each point on the axes, and the 

third (size) determined the size of each point. One categorical variable split the 

dataset onto two different axes (facets), and the other determined the color and 

shape of each point. 

All of this was accomplished using a single call to the seaborn 

function relplot(). Notice how we only provided the names of the variables in 

the dataset and the roles that we wanted them to play in the plot. Unlike when 

using matplotlib directly, it wasn‟t necessary to translate the variables into 

parameters of the visualization (e.g., the specific color or marker to use for each 

category). That translation was done automatically by seaborn. This lets the 

user stay focused on the question they want the plot to answer. 

API abstraction across visualizations 

There is no universal best way to visualize data. Different questions are best 

answered by different kinds of visualizations. Seaborn tries to make it easy to 

switch between different visual representations that can be parameterized with 

the same dataset-oriented API. 

The function relplot() is named that way because it is designed to visualize 

many different statistical relationships. While scatter plots are a highly effective 

way of doing this, relationships where one variable represents a measure of time 

are better represented by a line. The relplot() function has a 

convenient kind parameter to let you easily switch to this alternate 

representation: 

https://seaborn.pydata.org/generated/seaborn.load_dataset.html#seaborn.load_dataset
https://seaborn.pydata.org/introduction.html#intro-tidy-data
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
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dots = sns.load_dataset("dots") 

sns.relplot(x="time", y="firing_rate", col="align", 

            hue="choice", size="coherence", style="choice", 

facet_kws=dict(sharex=False), 

            kind="line", legend="full", data=dots); 

 
Fig 9 Seaborn Scatter Plot 

Notice how the size and style parameters are shared across the scatter and line 

plots, but they affect the two visualizations differently (changing marker area 

and symbol vs line width and dashing). We did not need to keep those details in 

mind, letting us focus on the overall structure of the plot and the information we 

want it to convey. 

Statistical estimation and error bars 

Often we are interested in the average value of one variable as a function of 

other variables. Many seaborn functions can automatically perform the 

statistical estimation that is neccesary to answer these questions: 

fmri = sns.load_dataset("fmri") 

sns.relplot(x="timepoint", y="signal", col="region", 

            hue="event", style="event", 

            kind="line", data=fmri); 
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Fig 10 Implot 

When statistical values are estimated, seaborn will use bootstrapping to 

compute confidence intervals and draw error bars representing the uncertainty 

of the estimate. 

Statistical estimation in seaborn goes beyond descriptive statisitics. For 

example, it is also possible to enhance a scatterplot to include a linear 

regression model (and its uncertainty) using lmplot(): 

sns.lmplot(x="total_bill", y="tip", col="time", hue="smoker", 

           data=tips); 

 
Fig 11 Specialized Categorical Plots 

Specialized categorical plots 

Standard scatter and line plots visualize relationships between numerical 

variables, but many data analyses involve categorical variables. There are 

https://seaborn.pydata.org/generated/seaborn.lmplot.html#seaborn.lmplot
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several specialized plot types in seaborn that are optimized for visualizing this 

kind of data. They can be accessed through catplot(). Similar to relplot(), the 

idea of catplot() is that it exposes a common dataset-oriented API that 

generalizes over different representations of the relationship between one 

numeric variable and one (or more) categorical variables. 

These representations offer different levels of granularity in their presentation of 

the underlying data. At the finest level, you may wish to see every observation 

by drawing a scatter plot that adjusts the positions of the points along the 

categorical axis so that they don‟t overlap: 

sns.catplot(x="day", y="total_bill", hue="smoker", 

            kind="swarm", data=tips); 

 
Fig 12 Kernal Density Plot 

 

Alternately, you could use kernel density estimation to represent the underlying 

distribution that the points are sampled from: 

sns.catplot(x="day", y="total_bill", hue="smoker", 

            kind="violin", split=True, data=tips); 

https://seaborn.pydata.org/generated/seaborn.catplot.html#seaborn.catplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.catplot.html#seaborn.catplot
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Fig 13 Mean Value plot 

 

Or you could show the only mean value and its confidence interval within each 

nested category: 

sns.catplot(x="day", y="total_bill", hue="smoker", 

            kind="bar", data=tips); 

 

Fig 14 Bar plot 
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Figure-level and axes-level functions 

How do these tools work? It‟s important to know about a major distinction 

between seaborn plotting functions. All of the plots shown so far have been 

made with “figure-level” functions. These are optimized for exploratory 

analysis because they set up the matplotlib figure containing the plot(s) and 

make it easy to spread out the visualization across multiple axes. They also 

handle some tricky business like putting the legend outside the axes. To do 

these things, they use a seaborn FacetGrid. 

Each different figure-level plot kind combines a particular “axes-level” function 

with the FacetGrid object. For example, the scatter plots are drawn using 

the scatterplot() function, and the bar plots are drawn using 

the barplot() function. These functions are called “axes-level” because they 

draw onto a single matplotlib axes and don‟t otherwise affect the rest of the 

figure. 

The upshot is that the figure-level function needs to control the figure it lives in, 

while axes-level functions can be combined into a more complex matplotlib 

figure with other axes that may or may not have seaborn plots on them: 

importmatplotlib.pyplotasplt 

f, axes = plt.subplots(1, 2, sharey=True, figsize=(6, 4)) 

sns.boxplot(x="day", y="tip", data=tips, ax=axes[0]) 

sns.scatterplot(x="total_bill", y="tip", hue="day", data=tips, ax=axes[1]); 

 

Controling the size of the figure-level functions works a little bit differently 

than it does for other matplotlib figures. Instead of setting the overall figure 

size, the figure-level functions are parameterized by the size of each facet. And 

instead of setting the height and width of each facet, you control the height 

and aspect ratio (ratio of width to height). This parameterization makes it easy 

to control the size of the graphic without thinking about exactly how many rows 

and columns it will have, although it can be a source of confusion: 

sns.relplot(x="time", y="firing_rate", col="align", 

            hue="choice", size="coherence", style="choice", 

            height=4.5, aspect=2 / 3, 

facet_kws=dict(sharex=False), 

            kind="line", legend="full", data=dots); 

https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot
https://seaborn.pydata.org/generated/seaborn.barplot.html#seaborn.barplot
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The way you can tell whether a function is “figure-level” or “axes-level” is 

whether it takes an ax= parameter. You can also distinguish the two classes by 

their output type: axes-level functions return the matplotlib axes, while figure-

level functions return the FacetGrid. 

Visualizing dataset structure 

There are two other kinds of figure-level functions in seaborn that can be used 

to make visualizations with multiple plots. They are each oriented towards 

illuminating the structure of a dataset. One, jointplot(), focuses on a single 

relationship: 

iris = sns.load_dataset("iris") 

sns.jointplot(x="sepal_length", y="petal_length", data=iris); 

 
Fig 15 Visualizing dataset structure 

https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot
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The other, pairplot(), takes a broader view, showing all pairwise relationships 

and the marginal distributions, optionally conditioned on a categorical variable : 

sns.pairplot(data=iris, hue="species"); 

 
Fig 16 Pairplot 

https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
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Both jointplot() and pairplot() have a few different options for visual 

representation, and they are built on top of classes that allow more thoroughly 

customized multi-plot figures (JointGrid and PairGrid, respectively). 

 

Customizing plot appearance 

The plotting functions try to use good default aesthetics and add informative 

labels so that their output is immediately useful. But defaults can only go so far, 

and creating a fully-polished custom plot will require additional steps. Several 

levels of additional customization are possible. 

The first way is to use one of the alternate seaborn themes to give your plots a 

different look. Setting a different theme or color palette will make it take effect 

for all plots: 

sns.set(style="ticks", palette="muted") 

sns.relplot(x="total_bill", y="tip", col="time", 

            hue="smoker", style="smoker", size="size", 

            data=tips); 

 
Fig 17 Smoker plot 

For figure-specific customization, all seaborn functions accept a number of 

optional parameters for switching to non-default semantic mappings, such as 

different colors. (Appropriate use of color is critical for effective data 

visualization, and seaborn has extensive support for customizing color palettes). 

https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot
https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot
https://seaborn.pydata.org/generated/seaborn.JointGrid.html#seaborn.JointGrid
https://seaborn.pydata.org/generated/seaborn.PairGrid.html#seaborn.PairGrid
https://seaborn.pydata.org/tutorial/color_palettes.html#palette-tutorial


79 
 

Finally, where there is a direct correspondence with an underlying matplotlib 

function (like scatterplot() and plt.scatter), additional keyword arguments will 

be passed through to the matplotlib layer: 

sns.relplot(x="total_bill", y="tip", col="time", 

            hue="size", style="smoker", size="size", 

            palette="YlGnBu", markers=["D", "o"], sizes=(10, 125), 

edgecolor=".2", linewidth=.5, alpha=.75, 

            data=tips); 

 
Fig 18 Scatter plot 

In the case of relplot() and other figure-level functions, that means there are a 

few levels of indirection because relplot() passes its exta keyword arguments to 

the underlying seaborn axes-level function, which passes its extra keyword 

arguments to the underlying matplotlib function. So it might take some effort to 

find the right documentation for the parameters you‟ll need to use, but in 

principle an extremely high level of customization is possible. 

Some customization of figure-level functions can be accomplished through 

additional parameters that get passed to FacetGrid, and you can use the 

methods on that object to control many other properties of the figure. For even 

more tweaking, you can access the matplotlib objects that the plot is drawn 

onto, which are stored as attributes: 

g = sns.catplot(x="total_bill", y="day", hue="time", 

                height=3.5, aspect=1.5, 

                kind="box", legend=False, data=tips); 

g.add_legend(title="Meal") 

https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.FacetGrid.html#seaborn.FacetGrid
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g.set_axis_labels("Total bill ($)", "") 

g.set(xlim=(0, 60), yticklabels=["Thursday", "Friday", "Saturday", "Sunday"]) 

g.despine(trim=True) 

g.fig.set_size_inches(6.5, 3.5) 

g.ax.set_xticks([5, 15, 25, 35, 45, 55], minor=True); 

plt.setp(g.ax.get_yticklabels(), rotation=30); 

 

Because the figure-level functions are oriented towards efficient exploration, 

using them to manage a figure that you need to be precisely sized and organized 

may take more effort than setting up the figure directly in matplotlib and using 

the corresponding axes-level seaborn function. Matplotlib has a comprehensive 

and powerful API; just about any attribute of the figure can be changed to your 

liking. The hope is that a combination of seaborn‟s high-level interface and 

matplotlib‟s deep customizability will allow you to quickly explore your data 

and create graphics that can be tailored into a publication quality final product. 

Organizing datasets 

As mentioned above, seaborn will be most powerful when your datasets have a 

particular organization. This format ia alternately called “long-form” or “tidy” 

data and is described in detail by Hadley Wickham in this academic paper. The 

rules can be simply stated: 

1. Each variable is a column 

2. Each observation is a row 

A helpful mindset for determining whether your data are tidy is to think 

backwards from the plot you want to draw. From this perspective, a “variable” 

is something that will be assigned a role in the plot. It may be useful to look at 

the example datasets and see how they are structured. For example, the first five 

rows of the “tips” dataset look like this: 

tips.head() 

 

 

 

 

https://github.com/wagnerlabpapers/Waskom_PNAS_2017
http://vita.had.co.nz/papers/tidy-data.html
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 total_bill tip sex smoker day time size 

0 

16.99 1.01 Female No Sun Dinner 2 

1 

10.34 1.66 Male No Sun Dinner 3 

2 

21.01 3.50 Male No Sun Dinner 3 

3 

23.68 3.31 Male No Sun Dinner 2 

4 

24.59 3.61 Female No Sun Dinner 4 

Table 1 Tips Dataset 

In some domains, the tidy format might feel awkward at first. Timeseries data, 

for example, are sometimes stored with every timepoint as part of the same 

observational unit and appearing in the columns. The “fmri” dataset that we 

used above illustrates how a tidy timeseries dataset has each timepoint in a 

different row: 

fmri.head() 

 

https://seaborn.pydata.org/introduction.html#intro-stat-estimation
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 subject timepoint event region signal 

0 
s13 18 stim parietal -0.017552 

1 
s5 14 stim parietal -0.080883 

2 
s12 18 stim parietal -0.081033 

3 
s11 18 stim parietal -0.046134 

4 
s10 18 stim parietal -0.037970 

Table 2 FRMI Dataset 

 

Many seaborn functions can plot wide-form data, but only with limited 

functionality. To take advantage of the features that depend on tidy-formatted 

data, you‟ll likely find the pandas.melt function useful for “un-pivoting” a 

wide-form dataframe. 

 

 

5.6 SCIKIT-LEARN 

 
Defining scikit learn, it is a free software machine learning library for the 

Python programming language. It features various classification, regression and 

clustering algorithms including support vector machines, random forests, 

gradient boosting, k-means and DBSCAN, and is designed to interoperate with 

the Python numerical and scientific libraries NumPy and SciPy. 

Scikit-learn was initially developed by David Cornopean as a Google summer 

of code project in 2007.Later Matthieu Brucher joined the project and started to 

use it as a part of his thesis work. In 2010 INRIA got involved and the first 

public release (v0.1 beta) was published in late January 2010.The project now 

has more than 30 active contributors and has had paid sponsorship from INRIA, 

Google, Tiny clues and the Python Software Foundation. 

In general, a learning problem considers a set of n samples of data and then tries 

to predict properties of unknown data. If each sample is more than a single 

number and, for instance, a multi-dimensional entry (aka multivariate data), it is 

said to have several attributes or features. 
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Learning problems fall into a few categories: 

 supervised learning, in which the data comes with additional attributes 

that we want to predict (Click here to go to the scikit-learn supervised 

learning page).This problem can be either: 

o classification: samples belong to two or more classes and we want 

to learn from already labeled data how to predict the class of 

unlabeled data. An example of a classification problem would be 

handwritten digit recognition, in which the aim is to assign each 

input vector to one of a finite number of discrete categories. 

Another way to think of classification is as a discrete (as opposed 

to continuous) form of supervised learning where one has a limited 

number of categories and for each of the n samples provided, one 

is to try to label them with the correct category or class. 

o regression: if the desired output consists of one or more continuous 

variables, then the task is called regression. An example of a 

regression problem would be the prediction of the length of a 

salmon as a function of its age and weight. 

 unsupervised learning, in which the training data consists of a set of input 

vectors x without any corresponding target values. The goal in such 

problems may be to discover groups of similar examples within the data, 

where it is called clustering, or to determine the distribution of data 

within the input space, known as density estimation, or to project the data 

from a high-dimensional space down to two or three dimensions for the 

purpose of visualization (Click here to go to the Scikit-Learn 

unsupervised learning page). 

Training set and testing set 

Machine learning is about learning some properties of a data set and then testing 

those properties against another data set. A common practice in machine 

learning is to evaluate an algorithm by splitting a data set into two. We call one 

of those sets the training set, on which we learn some properties; we call the 

other set the testing set, on which we test the learned properties. 

Loading an example dataset 

scikit-learn comes with a few standard datasets, for instance the iris and digits 

datasets for classification and the boston house prices dataset for regression. 

In the following, we start a Python interpreter from our shell and then load the 

iris and digits datasets. Our notational convention is that $ denotes the shell 

prompt while >>> denotes the Python interpreter prompt: 

$ python 

>>> from sklearn import datasets 

>>> iris = datasets.load_iris() 

>>> digits = datasets.load_digits() 
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A dataset is a dictionary-like object that holds all the data and some metadata 

about the data. This data is stored in the .data member, which is a n_samples, 

n_features array. In the case of supervised problem, one or more response 

variables are stored in the .target member. More details on the different datasets 

can be found in the dedicated section. 

For instance, in the case of the digits dataset, digits.data gives access to the 

features that can be used to classify the digits samples: 

>>> 

>>> print(digits.data)   

[[ 0.   0.   5. ...   0.   0.   0.] 

 [ 0.   0.   0. ...  10.   0.   0.] 

 [ 0.   0.   0. ...  16.   9.   0.] 

 ... 

 [ 0.   0.   1. ...   6.   0.   0.] 

 [ 0.   0.   2. ...  12.   0.   0.] 

 [ 0.   0.  10. ...  12.   1.   0.]] 

and digits.target gives the ground truth for the digit dataset, that is the number 

corresponding to each digit image that we are trying to learn: 

>>> 

>>>digits.target 

array([0, 1, 2, ..., 8, 9, 8]) 

Shape of the data arrays 

The data is always a 2D array, shape (n_samples, n_features), although the 

original data may have had a different shape. In the case of the digits, each 

original sample is an image of shape (8, 8) and can be accessed using: 

>>> 

>>>digits.images[0]   

array([[  0.,   0.,   5.,  13.,   9.,   1.,   0.,   0.], 

[  0.,   0.,  13.,  15.,  10.,  15.,   5.,   0.], 

[  0.,   3.,  15.,   2.,   0.,  11.,   8.,   0.], 

[  0.,   4.,  12.,   0.,   0.,   8.,   8.,   0.], 

[  0.,   5.,   8.,   0.,   0.,   9.,   8.,   0.], 

[  0.,   4.,  11.,   0.,   1.,  12.,   7.,   0.], 

[  0.,   2.,  14.,   5.,  10.,  12.,   0.,   0.], 

[  0.,   0.,   6.,  13.,  10.,   0.,   0.,   0.]]) 

The simple example on this dataset illustrates how starting from the original 

problem one can shape the data for consumption in scikit-learn. 

Loading from external datasets 

To load from an external dataset, please refer to loading external datasets. 

Learning and predicting 

In the case of the digits dataset, the task is to predict, given an image, which 

digit it represents. We are given samples of each of the 10 possible classes (the 
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digits zero through nine) on which we fit an estimator to be able to predict the 

classes to which unseen samples belong. 

In scikit-learn, an estimator for classification is a Python object that implements 

the methods fit(X, y) and predict(T). 

An example of an estimator is the class sklearn.svm.SVC, which implements 

support vector classification. The estimator‟s constructor takes as arguments the 

model‟s parameters. 

For now, we will consider the estimator as a black box: 

>>> 

>>> from sklearn import svm 

>>>clf = svm.SVC(gamma=0.001, C=100.) 

Choosing the parameters of the model 

In this example, we set the value of gamma manually. To find good values for 

these parameters, we can use tools such as grid search and cross validation. 

The clf (for classifier) estimator instance is first fitted to the model; that is, it 

must learn from the model. This is done by passing our training set to the fit 

method. For the training set, we‟ll use all the images from our dataset, except 

for the last image, which we‟ll reserve for our predicting. We select the training 

set with the [:-1] Python syntax, which produces a new array that contains all 

but the last item from digits.data: 

>>> 

>>>clf.fit(digits.data[:-1], digits.target[:-1])   

SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, 

decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf', 

max_iter=-1, probability=False, random_state=None, shrinking=True, 

tol=0.001, verbose=False) 

Now you can predict new values. In this case, you‟ll predict using the last image 

from digits.data. By predicting, you‟ll determine the image from the training set 

that best matches the last image. 

>>> 

>>>clf.predict(digits.data[-1:]) 

array([8]) 

The corresponding image is: 
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Fig 19 Training Set 

 

Fig 20 Flask logo 

Flask is a lightweight WSGI web application framework. It is designed to make 

getting started quick and easy, with the ability to scale up to complex 

applications. It began as a simple wrapper around Werkzeug and Jinja and has 

become one of the most popular Python web application frameworks. 

Flask offers suggestions, but doesn't enforce any dependencies or project layout. 

It is up to the developer to choose the tools and libraries they want to use. There 

are many extensions provided by the community that make adding new 

functionality easy. 

from flask import Flask, escape, request 

 

app = Flask(__name__) 

 

@app.route('/') 

defhello(): 

    name =request.args.get("name", "World") 

returnf'Hello, {escape(name)}!' 

https://palletsprojects.com/p/werkzeug
https://palletsprojects.com/p/jinja
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$ env FLASK_APP=hello.py flask run 

 * Serving Flask app "hello" 

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) 

Flask is a micro web framework written in Python. It is classified as a 

microframework because it does not require particular tools or libraries. It has 

no database abstraction layer, form validation, or any other components where 

pre-existing third-party libraries provide common functions. However, Flask 

supports extensions that can add application features as if they were 

implemented in Flask itself. Extensions exist for object-relational mappers, 

form validation, upload handling, various open authentication technologies and 

several common framework related tools. 

 

Applications that use the Flask framework include Pinterest and LinkedIn. 
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CHAPTER 6 
 

IMPLEMENTATION & RESULTS 
 

 

 

Modules are files that contain Python definitions and declarations. Modules can 

define functions, classes, and variables. Modules can also include executable 

code. Grouping related code in the module can make it easier to understand and 

use the code. It also makes the code logical. In Python programming, treat 

modules as the same as code libraries. 

 

The Designed system needs to be implemented. We are using Python 

Programming for the implementation. A chatbot is a computer program that 

allows people to interact with technology using various input methods (such as 

voice, text, gestures, and touch, 24 hours a day, 7 days a week, 365 days a 

year). 
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CHAPTER 7 

 

CONCLUSION 

 
CONCLUSION: 

 

The Project is being implemented. The Proposed Book Recommender System 

will use Content based filtering technique using cosine similarity algorithm. 

This methodology depends on making a plenty of parameters to describe a 

particular product.. Thinking about an Book as an  model the potential 

parameters could be Author, Publisher, Year Published etc.. The bigger the 

parameter set the better and simpler it is to coordinate examples with 

customer‟s profile and his online impression. 
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